Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach
A bilinear proportional-integral (PI) controller based on passivity-based formulations for integrating superconducting magnetic energy storage (SMES) devices to power ac microgrids is proposed in this paper. A cascade connection between a dc–dc chopper and a voltage source converter is made to integ...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8872
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8872
- Palabra clave:
- Active and reactive power compensation
Bilinear proportional-integral control
Dc–dc chopper
Power ac microgrids
Superconducting magnetic energy storage
Voltage source converter
Choppers (circuits)
Controllers
Electric energy storage
Electric power utilization
Energy resources
Magnetic storage
MATLAB
Reactive power
Robustness (control systems)
Superconducting magnets
Two term control systems
Active and Reactive Power
DC choppers
Micro grid
Proportional-integral control
Superconducting magnetic energy storages
Voltage source converters
Electric power system control
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2751f16adc33bfd5588e7e0c175f1d58 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8872 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach |
title |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach |
spellingShingle |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach Active and reactive power compensation Bilinear proportional-integral control Dc–dc chopper Power ac microgrids Superconducting magnetic energy storage Voltage source converter Choppers (circuits) Controllers Electric energy storage Electric power utilization Energy resources Magnetic storage MATLAB Reactive power Robustness (control systems) Superconducting magnets Two term control systems Active and Reactive Power DC choppers Micro grid Proportional-integral control Superconducting magnetic energy storages Voltage source converters Electric power system control |
title_short |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach |
title_full |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach |
title_fullStr |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach |
title_full_unstemmed |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach |
title_sort |
Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach |
dc.subject.keywords.none.fl_str_mv |
Active and reactive power compensation Bilinear proportional-integral control Dc–dc chopper Power ac microgrids Superconducting magnetic energy storage Voltage source converter Choppers (circuits) Controllers Electric energy storage Electric power utilization Energy resources Magnetic storage MATLAB Reactive power Robustness (control systems) Superconducting magnets Two term control systems Active and Reactive Power DC choppers Micro grid Proportional-integral control Superconducting magnetic energy storages Voltage source converters Electric power system control |
topic |
Active and reactive power compensation Bilinear proportional-integral control Dc–dc chopper Power ac microgrids Superconducting magnetic energy storage Voltage source converter Choppers (circuits) Controllers Electric energy storage Electric power utilization Energy resources Magnetic storage MATLAB Reactive power Robustness (control systems) Superconducting magnets Two term control systems Active and Reactive Power DC choppers Micro grid Proportional-integral control Superconducting magnetic energy storages Voltage source converters Electric power system control |
description |
A bilinear proportional-integral (PI) controller based on passivity-based formulations for integrating superconducting magnetic energy storage (SMES) devices to power ac microgrids is proposed in this paper. A cascade connection between a dc–dc chopper and a voltage source converter is made to integrate the SMES system. The proposed controller guarantees asymptotically stability in the Lyapunov's sense under closed-loop operation. This controller exploits the well-known advantages of the proportional-integral (PI) actions via passivation theory. Active and reactive power compensation in the ac system through the SMES integration is proposed as the control objective. To achieve this goal, a radial ac distribution feeder with high penetration of distributed energy resources and time-varying loads is employed. The effectiveness and the robustness of the proposed bilinear PI controller verified by comparing its dynamical performance to conventional approaches such as conventional PI and feedback controllers. All simulation results are conducted via MATLAB/SIMULINK software by using SimPowerSystem library. © 2018 Elsevier Ltd |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Energy Storage; Vol. 18, pp. 459-466 |
dc.identifier.issn.none.fl_str_mv |
2352152X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8872 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.est.2018.05.020 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 56919564100 |
identifier_str_mv |
Journal of Energy Storage; Vol. 18, pp. 459-466 2352152X 10.1016/j.est.2018.05.020 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 56919564100 |
url |
https://hdl.handle.net/20.500.12585/8872 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048734479&doi=10.1016%2fj.est.2018.05.020&partnerID=40&md5=548b01271c30eb39f010a06628543217 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8872/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021627447345152 |
spelling |
2020-03-26T16:32:32Z2020-03-26T16:32:32Z2018Journal of Energy Storage; Vol. 18, pp. 459-4662352152Xhttps://hdl.handle.net/20.500.12585/887210.1016/j.est.2018.05.020Universidad Tecnológica de BolívarRepositorio UTB5719149364856919564100A bilinear proportional-integral (PI) controller based on passivity-based formulations for integrating superconducting magnetic energy storage (SMES) devices to power ac microgrids is proposed in this paper. A cascade connection between a dc–dc chopper and a voltage source converter is made to integrate the SMES system. The proposed controller guarantees asymptotically stability in the Lyapunov's sense under closed-loop operation. This controller exploits the well-known advantages of the proportional-integral (PI) actions via passivation theory. Active and reactive power compensation in the ac system through the SMES integration is proposed as the control objective. To achieve this goal, a radial ac distribution feeder with high penetration of distributed energy resources and time-varying loads is employed. The effectiveness and the robustness of the proposed bilinear PI controller verified by comparing its dynamical performance to conventional approaches such as conventional PI and feedback controllers. All simulation results are conducted via MATLAB/SIMULINK software by using SimPowerSystem library. © 2018 Elsevier LtdDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048734479&doi=10.1016%2fj.est.2018.05.020&partnerID=40&md5=548b01271c30eb39f010a06628543217Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Active and reactive power compensationBilinear proportional-integral controlDc–dc chopperPower ac microgridsSuperconducting magnetic energy storageVoltage source converterChoppers (circuits)ControllersElectric energy storageElectric power utilizationEnergy resourcesMagnetic storageMATLABReactive powerRobustness (control systems)Superconducting magnetsTwo term control systemsActive and Reactive PowerDC choppersMicro gridProportional-integral controlSuperconducting magnetic energy storagesVoltage source convertersElectric power system controlGil-González W.Montoya O.D.Hussain, A., Arif, S.M., Aslam, M., Emerging renewable and sustainable energy technologies: state of the art (2017) Renew. Sustain. Energy Rev., 71, pp. 12-28Montoya, O.D., Garcs, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , http://www.sciencedirect.com/science/article/pii/S2352152X17303912Walker, S.B., van Lanen, D., Mukherjee, U., Fowler, M., Greenhouse gas emissions reductions from applications of power-to-gas in power generation (2017) Sustain. Energy Technol. Assess., 20, pp. 25-32Keyhani, A., Design of Smart Power Grid Renewable Energy Systems (2016), John Wiley & SonsKatiraei, F., Iravani, R., Hatziargyriou, N., Dimeas, A., Microgrids management (2008) IEEE Power Energy Mag., 6 (3)Amrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S., Overview of energy storage in renewable energy systems (2016) Int. J. Hydrogen Energy, 41 (45), pp. 20914-20927Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Kaur, A., Kaushal, J., Basak, P., A review on microgrid central controller (2016) Renew. Sustain. Energy Rev., 55, pp. 338-345Ibrahim, H., Ilinca, A., Perron, J., Energy storage systems-characteristics and comparisons (2008) Renew. Sustain. Energy Rev., 12 (5), pp. 1221-1250Giraldo, O.D.M., González, W.J.G., Ruiz, A.G., Mejía, A.E., Noreña, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70Nikolaidis, P., Poullikkas, A., Cost metrics of electrical energy storage technologies in potential power system operations (2018) Sustain. Energy Technol. Assess., 25, pp. 43-59Zakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494Montoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Storage, 16, pp. 259-268Montoya, O.D., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II: Express BriefsGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5Ali, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled SMES (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051Lin, X., Lei, Y., Coordinated control strategies for SMES-battery hybrid energy storage systems (2017) IEEE Access, 5, pp. 23452-23465Gil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907Sanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I Regul. Pap., 61 (7), pp. 2204-2211Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuška, R., Port-hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238Xu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (superconducting magnetic energy storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems – Amendment 1 (2014), pp. 1-16. , IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003)Bierhoff, M.H., Fuchs, F.W., Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation (2004) 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004, PESC 04, vol. 4, IEEE, pp. 2836-2842http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8872/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8872oai:repositorio.utb.edu.co:20.500.12585/88722021-02-02 14:37:28.984Repositorio Institucional UTBrepositorioutb@utb.edu.co |