Higher-order kinematic analyses of a planar parallel robot based on screw theory
This paper presents the higher-order kinematic analyses of a planar parallel robot, addressed by means of the theory of screws. The reduced velocity, acceleration, jerk and hyper-jerk state for the end-effector of robot was developed as a spatial vector by applying the concept of Lie algebra and hel...
- Autores:
-
Rodelo, M
Villa Ramírez, José Luis
Yime, E
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9975
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9975
https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012002
- Palabra clave:
- Algebra
Equations of motion
Kinematics
MATLAB
Screws
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_25d78ce6384eca5341d1fefc7f6a0bc5 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9975 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Higher-order kinematic analyses of a planar parallel robot based on screw theory |
title |
Higher-order kinematic analyses of a planar parallel robot based on screw theory |
spellingShingle |
Higher-order kinematic analyses of a planar parallel robot based on screw theory Algebra Equations of motion Kinematics MATLAB Screws LEMB |
title_short |
Higher-order kinematic analyses of a planar parallel robot based on screw theory |
title_full |
Higher-order kinematic analyses of a planar parallel robot based on screw theory |
title_fullStr |
Higher-order kinematic analyses of a planar parallel robot based on screw theory |
title_full_unstemmed |
Higher-order kinematic analyses of a planar parallel robot based on screw theory |
title_sort |
Higher-order kinematic analyses of a planar parallel robot based on screw theory |
dc.creator.fl_str_mv |
Rodelo, M Villa Ramírez, José Luis Yime, E |
dc.contributor.author.none.fl_str_mv |
Rodelo, M Villa Ramírez, José Luis Yime, E |
dc.subject.keywords.spa.fl_str_mv |
Algebra Equations of motion Kinematics MATLAB Screws |
topic |
Algebra Equations of motion Kinematics MATLAB Screws LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This paper presents the higher-order kinematic analyses of a planar parallel robot, addressed by means of the theory of screws. The reduced velocity, acceleration, jerk and hyper-jerk state for the end-effector of robot was developed as a spatial vector by applying the concept of Lie algebra and helicoidal vector field. In order to verify the effectiveness of this theoretical development, the kinematics models obtained was solved and simulated in MATLAB environment, using Freeth's Nephroid trajectory as reference path for tracking with the end-effector. The simulation results proved that this type of spatial notation is convenient, because it allows us to quickly develop equations of motion and express them succinctly in symbolic form, reducing the volume of algebra, simplifying the modeling tasks, implementation and execution the algorithms used to solve kinematic problems in parallel robots. The major contribution of this work is the possibility of extended the classical kinematic analysis to a high order system; where the application of screw theory becomes a safe and reliable mathematical tool, which may be successfully used on parallel planar robots with singular configurations, represented with helicoidal vector field. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-09T22:17:27Z |
dc.date.available.none.fl_str_mv |
2021-02-09T22:17:27Z |
dc.date.submitted.none.fl_str_mv |
2021-02-09 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
M Rodelo et al 2020 J. Phys.: Conf. Ser. 1671 012002 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9975 |
dc.identifier.url.none.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012002 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1671/1/012002 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
M Rodelo et al 2020 J. Phys.: Conf. Ser. 1671 012002 10.1088/1742-6596/1671/1/012002 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9975 https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012002 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Journal of Physics: Conference Series, Volume 1671 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/1/143.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/4/143.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/5/143.pdf.jpg |
bitstream.checksum.fl_str_mv |
9e5ae1a2c21986ffb2cbdb2d26a9b09f 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 5ee237fe4756ff1469cd9c88c9286d2b 1e2fe79f717ba1da3dd6faa57d524ba3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021614820392960 |
spelling |
Rodelo, M5a35a50f-392b-43ea-b5cd-69ca72b760ffVilla Ramírez, José Luis7f838bea-e596-45e5-a1f2-6351e6af6299Yime, E7e713607-2c04-4621-b30c-0fb7a52bf0592021-02-09T22:17:27Z2021-02-09T22:17:27Z20202021-02-09M Rodelo et al 2020 J. Phys.: Conf. Ser. 1671 012002https://hdl.handle.net/20.500.12585/9975https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/01200210.1088/1742-6596/1671/1/012002Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper presents the higher-order kinematic analyses of a planar parallel robot, addressed by means of the theory of screws. The reduced velocity, acceleration, jerk and hyper-jerk state for the end-effector of robot was developed as a spatial vector by applying the concept of Lie algebra and helicoidal vector field. In order to verify the effectiveness of this theoretical development, the kinematics models obtained was solved and simulated in MATLAB environment, using Freeth's Nephroid trajectory as reference path for tracking with the end-effector. The simulation results proved that this type of spatial notation is convenient, because it allows us to quickly develop equations of motion and express them succinctly in symbolic form, reducing the volume of algebra, simplifying the modeling tasks, implementation and execution the algorithms used to solve kinematic problems in parallel robots. The major contribution of this work is the possibility of extended the classical kinematic analysis to a high order system; where the application of screw theory becomes a safe and reliable mathematical tool, which may be successfully used on parallel planar robots with singular configurations, represented with helicoidal vector field.9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series, Volume 1671Higher-order kinematic analyses of a planar parallel robot based on screw theoryinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85AlgebraEquations of motionKinematicsMATLABScrewsLEMBCartagena de IndiasInvestigadoresSelig J M 2004 Lie groups and Lie algebras in robotics Computational Noncommutative Algebra and Applications vol 136, ed Byrnes J (Dordrecht: Springer)Gallardo-Alvarado J 2016 Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory (Switzerland: Springer International Publishing)Sun T, Yang S, Lian B 2020 Finite and Instantaneous Screw Theory in Robotic Mechanism (Singapore: Springer)Chen Q, Jian D 2020 Analysis and Synthesis of Compliant Parallel Mechanisms - Screw Theory Approach (Switzerland: Springer International Publishing)Zheng C, Han K, Bao J, Wen W, Sun K 2020 Dynamic analysis and simulation of six-axis cooperative robot based on screw theory Journal of Physics: Conference Series 1549 042087:1Guiju F, Zhao L, Tiantao F, Hao Z, Fu Q, Xiaohan S 2019 Kinematics modeling and analysis of leveling mechanism of orchard work platform based on screw theory Journal of Physics: Conference Series 1237 052042:1Zhao T J, Wang Y W, Sun M J 2018 Structure design and analysis of metamorphic mobile robot based on screw theory IEEE International Conference on Intelligence and Safety for Robotics (ISR) (Shenyang: IEEE)Chai X, Wang M, Xu L, Ye W 2020 Dynamic modeling and analysis of a 2PRU-UPR parallel robot based on screw theory IEEE Access 8 78868Cibicik A, Egeland O 2020 Kinematics and dynamics of flexible robotic manipulators using dual screws IEEE Transactions on Robotics Early Access 1Ophaswongse C, Agrawal S K 2020 Optimal design of a novel 3-DOF orientational parallel mechanism for pelvic assistance on a wheelchair: an approach based on kinematic geometry and screw theory IEEE Robotics and Automation Letters 5(2) 3315Cardona M, Cena C G 2019 Direct kinematics and Jacobian analysis of exoskeleton robots using screw theory and simscape multibody IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX) (Guatemala City: IEEE)Eager D, Pendrill A M, Reistad N 2016 Beyond velocity and acceleration: jerk, snap and higher derivatives European Journal of Physics 37(6) 065008:1Zhang Z, Shao Z, Wang L 2018 Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion Mechanism and Machine Theory 130 86Rodelo M, Villa J L, Duque J, Yime E 2018 Kinematic analysis and performance of a planar 3RRR parallel robot with kinematic redundancy using screw theory IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (Barranquilla: IEEE)Featherstone R 2008 Rigid Body Dynamics Algorithms (Boston: Springer)Chevallier D, Lerbet J 2018 The displacement group as a Lie group Multi-Body Kinematics and Dynamics with Lie Groups (London: ISTE Press Ltd.) chapter 1Gallardo-Alvarado J, Rodriguez R, Caudillo-Ram´ırez M, P´erez Gonz´alez L 2015 An application of screw theory to the Jerk analysis of a two-degrees-of-freedom parallel wrist Robotics 4 50Gallardo-Alvarado J 2014 Hyper-jerk analysis of robot manipulators Journal of Intelligent & Robotic Systems 74 625http://purl.org/coar/resource_type/c_c94fORIGINAL143.pdf143.pdfPonenciaapplication/pdf1406323https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/1/143.pdf9e5ae1a2c21986ffb2cbdb2d26a9b09fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT143.pdf.txt143.pdf.txtExtracted texttext/plain21589https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/4/143.pdf.txt5ee237fe4756ff1469cd9c88c9286d2bMD54THUMBNAIL143.pdf.jpg143.pdf.jpgGenerated Thumbnailimage/jpeg33148https://repositorio.utb.edu.co/bitstream/20.500.12585/9975/5/143.pdf.jpg1e2fe79f717ba1da3dd6faa57d524ba3MD5520.500.12585/9975oai:repositorio.utb.edu.co:20.500.12585/99752023-04-21 15:32:22.922Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |