A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization
This work presents a non-invasive, reusable and submersible permittivity sensor that uses a microwave technique for the dielectric characterization of liquid materials. The proposed device consists of a compact split ring resonator excited by two integrated monopole antennas. The sensing principle i...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8743
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8743
- Palabra clave:
- Material characterization
Metamaterial
Microwave sensor
Permittivity measurements
Split ring resonator
Chemical contamination
Dielectric materials
Dielectric properties of liquids
Liquids
Metamaterials
Microwave resonators
Monopole antennas
Optical resonators
Permittivity
Permittivity measurement
Q factor measurement
Ring gages
Submersibles
Dielectric characterization
Dielectric permittivities
Experimental procedure
Material characterizations
Mathematical equations
Sensing applications
Split ring resonator
Transmission coefficients
Microwave sensors
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_24518ae5d714a1b54f20d3488ce50063 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8743 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization |
title |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization |
spellingShingle |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization Material characterization Metamaterial Microwave sensor Permittivity measurements Split ring resonator Chemical contamination Dielectric materials Dielectric properties of liquids Liquids Metamaterials Microwave resonators Monopole antennas Optical resonators Permittivity Permittivity measurement Q factor measurement Ring gages Submersibles Dielectric characterization Dielectric permittivities Experimental procedure Material characterizations Mathematical equations Sensing applications Split ring resonator Transmission coefficients Microwave sensors |
title_short |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization |
title_full |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization |
title_fullStr |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization |
title_full_unstemmed |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization |
title_sort |
A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization |
dc.subject.keywords.none.fl_str_mv |
Material characterization Metamaterial Microwave sensor Permittivity measurements Split ring resonator Chemical contamination Dielectric materials Dielectric properties of liquids Liquids Metamaterials Microwave resonators Monopole antennas Optical resonators Permittivity Permittivity measurement Q factor measurement Ring gages Submersibles Dielectric characterization Dielectric permittivities Experimental procedure Material characterizations Mathematical equations Sensing applications Split ring resonator Transmission coefficients Microwave sensors |
topic |
Material characterization Metamaterial Microwave sensor Permittivity measurements Split ring resonator Chemical contamination Dielectric materials Dielectric properties of liquids Liquids Metamaterials Microwave resonators Monopole antennas Optical resonators Permittivity Permittivity measurement Q factor measurement Ring gages Submersibles Dielectric characterization Dielectric permittivities Experimental procedure Material characterizations Mathematical equations Sensing applications Split ring resonator Transmission coefficients Microwave sensors |
description |
This work presents a non-invasive, reusable and submersible permittivity sensor that uses a microwave technique for the dielectric characterization of liquid materials. The proposed device consists of a compact split ring resonator excited by two integrated monopole antennas. The sensing principle is based on the notch introduced by the resonators in the transmission coefficient, which is affected due to the introduction of the sensor in a new liquid material. Then, a frequency shift of the notch and the Q-factor of the proposed sensor are related with the changes in the surrounding medium. By means of a particular experimental procedure, commercial liquids are employed to obtain the calibration curve. Thus, a mathematical equation is obtained to extract the dielectric permittivity of liquid materials with unknown dielectric properties. A good match between simulated and experimental results is obtained, as well as a high Q-factor, compact size, good sensitivity and high repeatability for use in sensing applications. Sensors like the one here presented could lead to promising solutions for characterizing materials, particularly in determining material properties and quality in the food industry, bio-sensing and other applications. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T19:05:16Z |
dc.date.available.none.fl_str_mv |
2019-11-06T19:05:16Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Sensors (Switzerland); Vol. 19, Núm. 8 |
dc.identifier.issn.none.fl_str_mv |
1424-8220 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8743 |
dc.identifier.doi.none.fl_str_mv |
10.3390/s19081936 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
identifier_str_mv |
Sensors (Switzerland); Vol. 19, Núm. 8 1424-8220 10.3390/s19081936 Universidad Tecnológica de Bolívar Repositorio UTB |
url |
https://hdl.handle.net/20.500.12585/8743 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85065302543&doi=10.3390%2fs19081936&partnerID=40&md5=8bdd8af835db67e3482bb946520f94c0 Scopus 57195722871 Scopus 57204207314 Scopus 57200341418 Scopus 36698427600 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8743/1/DOI10_3390s19081936.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/8743/4/DOI10_3390s19081936.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/8743/5/DOI10_3390s19081936.pdf.jpg |
bitstream.checksum.fl_str_mv |
a062f4f4364a38b20a94cdbe9ab65ab3 b47c4d454bec76bbc4c6f52ae1a179b8 df5118c9aea66919794a3b224b380e12 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021790188437504 |
spelling |
2019-11-06T19:05:16Z2019-11-06T19:05:16Z2019Sensors (Switzerland); Vol. 19, Núm. 81424-8220https://hdl.handle.net/20.500.12585/874310.3390/s19081936Universidad Tecnológica de BolívarRepositorio UTBThis work presents a non-invasive, reusable and submersible permittivity sensor that uses a microwave technique for the dielectric characterization of liquid materials. The proposed device consists of a compact split ring resonator excited by two integrated monopole antennas. The sensing principle is based on the notch introduced by the resonators in the transmission coefficient, which is affected due to the introduction of the sensor in a new liquid material. Then, a frequency shift of the notch and the Q-factor of the proposed sensor are related with the changes in the surrounding medium. By means of a particular experimental procedure, commercial liquids are employed to obtain the calibration curve. Thus, a mathematical equation is obtained to extract the dielectric permittivity of liquid materials with unknown dielectric properties. A good match between simulated and experimental results is obtained, as well as a high Q-factor, compact size, good sensitivity and high repeatability for use in sensing applications. Sensors like the one here presented could lead to promising solutions for characterizing materials, particularly in determining material properties and quality in the food industry, bio-sensing and other applications. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Instituto Tecnológico de Costa Rica: P15106, P13252, Universidad Tecnológica de PereiraRecurso electrónicoapplication/pdfengMDPI AGhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85065302543&doi=10.3390%2fs19081936&partnerID=40&md5=8bdd8af835db67e3482bb946520f94c0Scopus 57195722871Scopus 57204207314Scopus 57200341418Scopus 36698427600A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterizationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Material characterizationMetamaterialMicrowave sensorPermittivity measurementsSplit ring resonatorChemical contaminationDielectric materialsDielectric properties of liquidsLiquidsMetamaterialsMicrowave resonatorsMonopole antennasOptical resonatorsPermittivityPermittivity measurementQ factor measurementRing gagesSubmersiblesDielectric characterizationDielectric permittivitiesExperimental procedureMaterial characterizationsMathematical equationsSensing applicationsSplit ring resonatorTransmission coefficientsMicrowave sensorsReyes-Vera, E.Acevedo-Osorio, G.Arias-Correa, M.Senior, D.E.Zhou, H., Hu, D., Yang, C., Chen, C., Ji, J., Chen, M., Chen, Y., Mu, X., Multi-Band Sensing for Dielectric Property of Chemicals Using Metamaterial Integrated Microfluidic Sensor (2018) Sci. Rep, 8, p. 14801Kaatze, U., Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging (2013) Meas. Sci. Technol, 24Ansari, M.A.H., Jha, A.K., Akhtar, M.J., Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity (2015) IEEE Sens. J, 15, pp. 7181-7189Jilnai, M., Wen, W., Cheong, L., Ur Rehman, M., A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging (2016) Sensors, 16, p. 52Gutierrez, S., Just, T., Sachs, J., Baer, C., Vega, F., Field-Deployable System for the Measurement of Complex Permittivity of Improvised Explosives and Lossy Dielectric Materials (2018) IEEE Sens. J, 18, pp. 6706-6714Murata, K.I., Hanawa, A., Nozaki, R., Broadband complex permittivity measurement techniques of materials with thin configuration at microwave frequencies (2005) J. Appl. Phys, p. 98Saeed, K., Pollard, R.D., Hunter, I.C., Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials (2008) IEEE Trans. Microw. Theory Tech, 56, pp. 2340-2347Valencia-Balvín, C., Pérez-Walton, S., Osorio-Guillén, J.M., First principles calculations of the electronic and dielectric properties of λ-Ta2O5 (2018) TecnoLógicas, 21, pp. 43-52Stacheder, M., Koeniger, F., Schuhmann, R., New Dielectric Sensors and Sensing Techniques for Soil and Snow Moisture Measurements (2009) Sensors, 9, pp. 2951-2967Torrealba-Meléndez, R., Sosa-Morales, M.E., Olvera-Cervantes, J.L., Corona-Chávez, A., Dielectric Properties of Beans at Ultra-Wide Band Frequencies (2014) J. Microw. Power Electromagn. Energy, 48, pp. 104-112Lee, H.J., Lee, H.S., Yoo, K.H., Yook, J.G., DNA sensing using split-ring resonator alone at microwave regime (2010) J. Appl. Phys, p. 108Sun, J., Huang, M., Yang, J.-J., Li, T.-H., Lan, Y.-Z., A microring resonator based negative permeability metamaterial sensor (2011) Sensors, 11, pp. 8060-8071Stevan, S., Paiter, L., Galvão, J., Roque, D., Chaves, E., Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress (2015) Sensors, 15, pp. 26457-26477Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., Varadan, V.K., (2004) Microwave Electronics Measurement and Materials Characterization, , John Wiley & Sons, Ltd: Chichester, UKMegriche, A., Belhadj, A., Mgaidi, A., Microwave dielectric properties of binary solvent water- alcohol, alcohol-alcohol mixtures at temperatures between (2012) Mediterr. J. Chem, 1, pp. 200-209Saeed, K., Shafique, M.F., Byrne, M.B., Hunter, I.C., (2012) Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Applications, , Haq, M.Z., Ed., In Tech: London, UKJilani, M.T., Zaka, M., Khan, A.M., Khan, M.T., Ali, S.M., A Brief Review of Measuring Techniques for Characterization of Dielectric Materials (2012) Int. J. Inf. Technol. Electr. Eng, p. 1Lobato-Morales, H., Corona-Chávez, A., Murthy, D.V.B., Olvera-Cervantes, J.L., Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities (2010) Rev. Sci. Instrum, 81, p. 64704Li, S., Akyel, C., Bosisio, R.G., Precise Calculations and Measurements on the Complex Dielectric Constant of Lossy Materials Using TM/sub 010/ Cavity Perturbation Techniques (1981) IEEE Trans. Microw. Theory Tech, 29, pp. 1041-1048Galindo-Romera, G., Javier Herraiz-Martinez, F., Gil, M., Martinez-Martinez, J.J., Segovia-Vargas, D., Submersible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization (2016) IEEE Sens. J, 16, pp. 3587-3596Acevedo-Osorio, G., Muñoz Ossa, H., Reyes-Vera, E., Performance Analysis of Monopole Excited Split Ring Resonator for Permittivity Characterization (2017) 2017 42Nd International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz)IEEE: Cancun, Mexico, pp. 1-2Lobato-Morales, H., Corona-Chavez, A., Olvera-Cervantes, J.L., Planar sensors for RFID wireless complex-dielectric-permittivity sensing of liquids (2013) 2013 IEEE MTT-S International Microwave Symposium Digest (MTT)IEEE, pp. 1-3. , Berlin, GermanyIqbal, A., Smida, A., Saraereh, O.A., Alsafasfeh, Q.H., Mallat, N.K., Lee, B.M., Cylindrical Dielectric Resonator Antenna-Based Sensors for Liquid Chemical Detection (2019) Sensors, 19, p. 1200Xu, K., Liu, Y., Chen, S., Zhao, P., Peng, L., Dong, L., Wang, G., Novel Microwave Sensors Based on Split Ring Resonators for Measuring Permittivity (2018) IEEE Access, 6, pp. 26111-26120Domínguez, M., Cataño, D., Reyes, E., Design a sensor of relative dielectric permittivity of a medium using an antenna microstrip with metamaterial structures (2015) Actas Ing, 1, pp. 110-114Benkhaoua, L., Benhabiles, M.T., Mouissat, S., Riabi, M.L., Miniaturized Quasi-Lumped Resonator for Dielectric Characterization of Liquid Mixtures (2016) IEEE Sens. J, 16, pp. 1603-1610Islam, M.T., Hoque, A., Almutairi, A.F., Amin, N., Left-handed metamaterial-inspired unit cell for S-Band glucose sensing application (2019) Sensors, 19, p. 169Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S., Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity (2000) Phys. Rev. Lett, 84, pp. 4184-4187Castellanos, L.M., Lopez, F., Reyes-Vera, E., Metamateriales: Principales características y aplicaciones (2016) Rev. La Acad. Colomb. Ciencias Exactas, Físicas Y Nat, 40, p. 395Catano-Ochoa, D., Senior, D.E., Lopez, F., Reyes-Vera, E., Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators (2016) Proceedings of the 2016 IEEE Antennas and Propagation Society International Symposium, Fajardo, Puerto Rico, 26 June–1Raghavan, S., Rajeshkumar, V., An overview of metamaterials in biomedical applications (2013) Prog. Electromagn. Res. Symp, pp. 368-371Chen, T., Li, S., Sun, H., Metamaterials application in sensing (2012) Sensors, 12, pp. 2742-2765Cheng, X., Shi, J., Jao, P., Senior, D.E., Yoon, Y.-K., Reconfigurable split ring resonator array loaded waveguide for insitu tuning (2011) Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane,Wa, USA, 3–8 July, pp. 2947-2950Reyes-Vera, E., Senior, D.E., Luna-Rivera, J.M., Lopez, F., Advances in electromagnetic applications and communications (2018) TecnoLógicas, 21, pp. 9-13Rusni, I., Ismail, A., Alhawari, A., Hamidon, M., Yusof, N., An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications (2014) Sensors, 14, pp. 13134-13148Lobato-Morales, H., Corona-Chavez, A., Olvera-Cervantes, J.L., Chavez-Perez, R.A., Medina-Monroy, J.L., Wireless Sensing of Complex Dielectric Permittivity of Liquids Based on the RFID (2014) IEEE Trans. Microw. Theory Tech, 62, pp. 2160-2167Lee, H.J., Lee, J.H., Choi, S., Jang, I.S., Choi, J.S., Jung, H., Il Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers (2013) Appl. Phys. Lett, p. 103Lee, H.J., Yook, J.G., Biosensing using split-ring resonators at microwave regime (2008) Appl. Phys. Lett, 92, pp. 2011-2014Lee, C.-S., Yang, C.-L., Thickness and Permittivity Measurement in Multi-Layered Dielectric Structures Using Complementary Split-Ring Resonators (2014) IEEE Sens. J, 14, pp. 695-700Salim, A., Lim, S., Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor (2016) Sensors, 16, p. 1802Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., Abbott, D., High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization (2014) IEEE Sens. J, 14, pp. 1345-1351Withayachumnankul, W., Jaruwongrungsee, K., Tuantranont, A., Fumeaux, C., Abbott, D., Metamaterial-based microfluidic sensor for dielectric characterization (2013) Sens. Actuators, a Phys, 189, pp. 233-237Velez, P., Su, L., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids (2017) IEEE Sens. J, 17, pp. 6589-6598Chretiennot, T., Dubuc, D., Grenier, K.A., Microwave and Microfluidic Planar Resonator for Efficient and Accurate Complex Permittivity Characterization of Aqueous Solutions (2013) IEEE Trans. Microw. Theory Tech, 61, pp. 972-978Velez, P., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids (2018) IEEE Access, 6Velez, P., Munoz-Enano, J., Grenier, K., Mata-Contreras, J., Dubuc, D., Martin, F., Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements (2019) IEEE Sens. J, 19, pp. 2562-2569Boratay, K., Miniaturized negative permeability materials (2007) Appl. Phys. Lett, pp. 137-139Zahertar, S., Yalcinkaya, A.D., Torun, H., Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies (2015) AIP Adv, 5Baena, J.D., Bonache, J., Martin, F., Sillero, R.M., Falcone, F., Lopetegi, T., Laso, M.A.G., Portillo, M.F., Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines (2005) IEEE Trans. Microw. Theory Tech, 53, pp. 1451-1461Alahnomi, R.A., Zakaria, Z., Ruslan, E., Ab Rashid, S.R., Mohd Bahar, A.A., High-Q Sensor Based on Symmetrical Split Ring Resonator With Spurlines for Solids Material Detection (2017) IEEE Sens. J, 17, pp. 2766-2775Alahnomi, R.A., Zakaria, Z., Ruslan, E., Bahar, A.A.M., A Novel Symmetrical Split Ring Resonator Based on Microstrip for Microwave Sensors (2016) Meas. Sci. Rev, 16, pp. 21-27Kumari, R., Patel, P.N., Yadav, R., An ENG Resonator-Based Microwave Sensor for the Characterization of Aqueous Glucose (2018) J. Phys. D. Appl. Phys, 51http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_3390s19081936.pdfapplication/pdf5019846https://repositorio.utb.edu.co/bitstream/20.500.12585/8743/1/DOI10_3390s19081936.pdfa062f4f4364a38b20a94cdbe9ab65ab3MD51TEXTDOI10_3390s19081936.pdf.txtDOI10_3390s19081936.pdf.txtExtracted texttext/plain50511https://repositorio.utb.edu.co/bitstream/20.500.12585/8743/4/DOI10_3390s19081936.pdf.txtb47c4d454bec76bbc4c6f52ae1a179b8MD54THUMBNAILDOI10_3390s19081936.pdf.jpgDOI10_3390s19081936.pdf.jpgGenerated Thumbnailimage/jpeg90421https://repositorio.utb.edu.co/bitstream/20.500.12585/8743/5/DOI10_3390s19081936.pdf.jpgdf5118c9aea66919794a3b224b380e12MD5520.500.12585/8743oai:repositorio.utb.edu.co:20.500.12585/87432020-10-23 04:46:46.93Repositorio Institucional UTBrepositorioutb@utb.edu.co |