Detection and removal of dust artifacts in retinal images via sparse-based inpainting

Dust particle artifacts are present in all imaging modalities but have more adverse consequences in medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms. We propose a method for detecting and accurately segmenting dust artifacts in retinal images based...

Full description

Autores:
Barrios, Erik
Sierra, Enrique
Romero, Lenny A.
Millán, María S.
Marrugo, Andres G.
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12319
Acceso en línea:
https://hdl.handle.net/20.500.12585/12319
Palabra clave:
Retina Image;
Ophthalmology;
Diabetic Retinopathy
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_24508fb474276ff53bbfde5b56702ce7
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12319
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Detection and removal of dust artifacts in retinal images via sparse-based inpainting
title Detection and removal of dust artifacts in retinal images via sparse-based inpainting
spellingShingle Detection and removal of dust artifacts in retinal images via sparse-based inpainting
Retina Image;
Ophthalmology;
Diabetic Retinopathy
LEMB
title_short Detection and removal of dust artifacts in retinal images via sparse-based inpainting
title_full Detection and removal of dust artifacts in retinal images via sparse-based inpainting
title_fullStr Detection and removal of dust artifacts in retinal images via sparse-based inpainting
title_full_unstemmed Detection and removal of dust artifacts in retinal images via sparse-based inpainting
title_sort Detection and removal of dust artifacts in retinal images via sparse-based inpainting
dc.creator.fl_str_mv Barrios, Erik
Sierra, Enrique
Romero, Lenny A.
Millán, María S.
Marrugo, Andres G.
dc.contributor.author.none.fl_str_mv Barrios, Erik
Sierra, Enrique
Romero, Lenny A.
Millán, María S.
Marrugo, Andres G.
dc.subject.keywords.spa.fl_str_mv Retina Image;
Ophthalmology;
Diabetic Retinopathy
topic Retina Image;
Ophthalmology;
Diabetic Retinopathy
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Dust particle artifacts are present in all imaging modalities but have more adverse consequences in medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms. We propose a method for detecting and accurately segmenting dust artifacts in retinal images based on multi-scale template-matching on several input images and an iterative segmentation via an inpainting approach. The inpainting is done through dictionary learning and sparse-based representation. The artifact segmentation is refined by comparing the original image to the initial restoration. On average, 90% of the dust artifacts were detected in the test images, with state-of-theart restoration results. All detected artifacts were accurately segmented and removed. Even the most challenging artifacts located on top of blood vessels were removed. Thus, ensuring the continuity of the retinal structures. The proposed method successfully detects and removes dust artifacts in retinal images, which could be used to avoid false-positive lesion detections or as an image quality criterion. An implementation of the proposed algorithm can be accessed and executed through a Code Ocean compute capsule. © 2021. All Rights Reserved.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:20:40Z
dc.date.available.none.fl_str_mv 2023-07-21T16:20:40Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Barrios Montes, E. M., Sierra, E., Romero Pérez, L. A., Millán Garcia-Varela, M. S., & Marrugo Hernandez, A. G. (2021). Detection and removal of dust artifacts in retinal images via sparse-based inpainting. Óptica pura y aplicada, 54(3), 1-14.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12319
dc.identifier.doi.none.fl_str_mv 10.7149/OPA.54.3.51060
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Barrios Montes, E. M., Sierra, E., Romero Pérez, L. A., Millán Garcia-Varela, M. S., & Marrugo Hernandez, A. G. (2021). Detection and removal of dust artifacts in retinal images via sparse-based inpainting. Óptica pura y aplicada, 54(3), 1-14.
10.7149/OPA.54.3.51060
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12319
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Optica Pura y Aplicada
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/1/OPA.54.3.51060.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/5/OPA.54.3.51060.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/4/OPA.54.3.51060.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
054926cd297b08b3f9fa5b9682ca6c80
e20ad307a1c5f3f25af9304a7a7c86b6
95acc1ae5c16f21c49074091897da983
c1cb36bbea17e0b8320e299cdecaf073
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021720764317696
spelling Barrios, Erikbb277699-e10e-4f85-982c-9a3b98acb515Sierra, Enriqued24332ba-a9f2-4a63-a549-840840da9ba0Romero, Lenny A.4e34aa8a-f981-4e1d-ae32-d45acb6abcf9Millán, María S.ddefb810-3364-48af-9963-b4070fe39d5dMarrugo, Andres G.3d6cd388-d48f-4669-934f-49ca4179f5422023-07-21T16:20:40Z2023-07-21T16:20:40Z20212023Barrios Montes, E. M., Sierra, E., Romero Pérez, L. A., Millán Garcia-Varela, M. S., & Marrugo Hernandez, A. G. (2021). Detection and removal of dust artifacts in retinal images via sparse-based inpainting. Óptica pura y aplicada, 54(3), 1-14.https://hdl.handle.net/20.500.12585/1231910.7149/OPA.54.3.51060Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDust particle artifacts are present in all imaging modalities but have more adverse consequences in medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms. We propose a method for detecting and accurately segmenting dust artifacts in retinal images based on multi-scale template-matching on several input images and an iterative segmentation via an inpainting approach. The inpainting is done through dictionary learning and sparse-based representation. The artifact segmentation is refined by comparing the original image to the initial restoration. On average, 90% of the dust artifacts were detected in the test images, with state-of-theart restoration results. All detected artifacts were accurately segmented and removed. Even the most challenging artifacts located on top of blood vessels were removed. Thus, ensuring the continuity of the retinal structures. The proposed method successfully detects and removes dust artifacts in retinal images, which could be used to avoid false-positive lesion detections or as an image quality criterion. An implementation of the proposed algorithm can be accessed and executed through a Code Ocean compute capsule. © 2021. All Rights Reserved.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Optica Pura y AplicadaDetection and removal of dust artifacts in retinal images via sparse-based inpaintinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Retina Image;Ophthalmology;Diabetic RetinopathyLEMBCartagena de IndiasAbramoff, M.D., Garvin, M.K., Sonka, M. Retinal imaging and image analysis (2010) IEEE Reviews in Biomedical Engineering, 3, art. no. 5660089, pp. 169-208. Cited 967 times. doi: 10.1109/RBME.2010.2084567Fenner, B.J., Wong, R.L.M., Lam, W.-C., Tan, G.S.W., Cheung, G.C.M. Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review (2018) Ophthalmology and Therapy, 7 (2), pp. 333-346. Cited 65 times. http://www.springer.com/springer+healthcare/journal/40123 doi: 10.1007/s40123-018-0153-7Marrugo, A.G., Millán, M.S. Retinal image analysis: Image processing and feature extraction oriented to the clinical task (2017) Optica Pura y Aplicada, 50 (1), pp. 49-62. Cited 3 times. http://www.sedoptica.es/Menu_Volumenes/Pdfs/OPA_50_1_49507.pdf doi: 10.7149/OPA.50.1.49507Sierra, E., Marrugo, A.G., Millán, M.S. Dust particle artifact detection and removal in retinal images (2017) Optica Pura y Aplicada, 50 (4), pp. 379-387. Cited 4 times. http://www.sedoptica.es/Menu_Volumenes/Pdfs/OPA_50_4_49075.pdf doi: 10.7149/OPA.50.4.49075Marrugo, A.G., Millán, M.S., Šorel, M., Šroubek, F. Restoration of retinal images with space-variant blur (2014) Journal of Biomedical Optics, 19 (1), art. no. 016023. Cited 10 times. doi: 10.1117/1.JBO.19.1.016023Narasimha-Iyer, H., Can, A., Roysam, B., Stewart, C.V., Tanenbaum, H.L., Majerovics, A., Singh, H. Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy (2006) IEEE Transactions on Biomedical Engineering, 53 (6), art. no. 1634503, pp. 1084-1098. Cited 141 times. doi: 10.1109/TBME.2005.863971Ordóñez, P.F., Cepeda, C.M., Garrido, J., Chakravarty, S. Classification of images based on small local features: A case applied to microaneurysms in fundus retina images (2017) Journal of Medical Imaging, 4 (4), art. no. 041309. Cited 5 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.4.4.041309Manjaramkar, A., Kokare, M. Statistical Geometrical Features for Microaneurysm Detection (2018) Journal of Digital Imaging, 31 (2), pp. 224-234. Cited 18 times. doi: 10.1007/s10278-017-0008-0Zamfir, M., Steinberg, E., Prilutsky, Y. (2010) Image defect map creation using batches of digital images [9] Patent US 2010/0321537 A1Willson, R.G., Maimone, M.W., Johnson, A.E., Scherr, L.M. An optical model for image artifacts produced by dust particles on lenses (2005) European Space Agency, (Special Publication) ESA SP, (603), pp. 801-808. Cited 17 times.Li, C., Zhou, K., Lin, S. Removal of dust artifacts in focal stack image sequences (2012) Proceedings - International Conference on Pattern Recognition, art. no. 6460700, pp. 2602-2605. Cited 6 times. ISBN: 978-499064410-9Altamar-Mercado, H., Patino-Vanegas, A., Marrugo, A. G. Extended Focused Image in White Light Scanning Interference Microscopy (2019) Imaging and Applied Optics 2019 [12] in ITh1C.3, Optical Society of America, (Munich)Zhou, C., Lin, S. Removal of image artifacts due to sensor dust (2007) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, art. no. 4270285. Cited 29 times. ISBN: 1424411807; 978-142441180-1 doi: 10.1109/CVPR.2007.383260Mora, A.D., Soares, J., Fonseca, J.M. A template matching technique for artifacts detection in retinal images (2013) International Symposium on Image and Signal Processing and Analysis, ISPA, art. no. 06703831, pp. 717-722. Cited 8 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000347 ISBN: 978-953184194-8 doi: 10.1109/ispa.2013.6703831Niemeijer, M., Abràmoff, M.D., van Ginneken, B. Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening (2006) Medical Image Analysis, 10 (6), pp. 888-898. Cited 114 times. doi: 10.1016/j.media.2006.09.006Millán, M.S., Marrugo, A.G., Alba-Bueno, F. Quality changes in fundus images of pseudophakic eyes (2018) Optica Pura y Aplicada, 51 (4), art. no. 50015. http://www.sedoptica.es doi: 10.7149/OPA.51.4.50015Köhler, T., Budai, A., Kraus, M.F., Odstrčilik, J., Michelson, G., Hornegger, J. Automatic no-reference quality assessment for retinal fundus images using vessel segmentation (2013) Proceedings of CBMS 2013 - 26th IEEE International Symposium on Computer-Based Medical Systems, art. no. 6627771, pp. 95-100. Cited 109 times. ISBN: 978-147991053-3 doi: 10.1109/CBMS.2013.6627771Veiga, D., Pereira, C., Ferreira, M., Gonçalves, L., Monteiro, J. Quality evaluation of digital fundus images through combined measures (Open Access) (2014) Journal of Medical Imaging, 1 (1), art. no. 014001. Cited 21 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.1.1.014001Ali Shah, S.A., Laude, A., Faye, I., Tang, T.B. Automated microaneurysm detection in diabetic retinopathy using curvelet transform (Open Access) (2016) Journal of Biomedical Optics, 21 (10), art. no. 101404. Cited 38 times. http://www.spie.org/x866.xml doi: 10.1117/1.JBO.21.10.101404Yang, P., Chen, L., Tian, J., Xu, X. Dust particle detection in surveillance video using salient visual descriptors (Open Access) (2017) Computers and Electrical Engineering, 62, pp. 224-231. Cited 5 times. doi: 10.1016/j.compeleceng.2016.11.012Chen, L., Zhu, D., Tian, J., Liu, J. Dust particle detection in traffic surveillance video using motion singularity analysis (Open Access) (2016) Digital Signal Processing: A Review Journal, 58, pp. 127-133. Cited 11 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/1/8/index.htt doi: 10.1016/j.dsp.2016.07.020Hu, L., Chen, L., Cheng, J. Gray spot detection in surveillance video using convolutional neural network (2018) Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, ICIEA 2018, pp. 2806-2810. Cited 4 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8388183 ISBN: 978-153863757-9 doi: 10.1109/ICIEA.2018.8398187Forsyth, D. A., Ponce, J. (2011) Computer vision: A modern approach. Cited 3224 times. [23] Prentice HallZeng, K., Erus, G., Sotiras, A., Shinohara, R.T., Davatzikos, C. Abnormality Detection via Iterative Deformable Registration and Basis-Pursuit Decomposition (Open Access) (2016) IEEE Transactions on Medical Imaging, 35 (8), art. no. 7426805, pp. 1937-1951. Cited 11 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42 doi: 10.1109/TMI.2016.2538998Girard, F., Kavalec, C., Cheriet, F. Statistical atlas-based descriptor for an early detection of optic disc abnormalities (2018) Journal of Medical Imaging, 5 (1), art. no. 014006. Cited 4 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.5.1.014006Kou, C., Li, W., Liang, W., Yu, Z., Hao, J. Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network (2019) Journal of Medical Imaging, 6 (2), art. no. 025008. Cited 31 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.6.2.025008Sierra, Enrique, Marrugo, Andres G, Barrios, Erik (2021) Dust particle artifact detection in retinal images [27] [Source Code]Gonzalez, R. C., Woods, R. E., Eddins, S. L. Digital image processing using matlab (2009) Gatesmark Publishing. Cited 82 times. [28]Lewis, J. Fast normalized cross-correlation (1995) Vision interface, 10 (1), pp. 120-123. Cited 1443 times. [29] inLin, J., Yu, L., Weng, Q. Retinal image quality assessment for diabetic retinopathy screening: A survey (2019) Multimedia Tools and Applications, pp. 1-27. Cited 3 times. [30]Awati, A., Chinmayee Rao, H., Patil, M.R. Image inpainting for hemorrhage detection in mass screening of diabetic retinopathy (2018) Advances in Intelligent Systems and Computing, 810, pp. 1011-1020. http://www.springer.com/series/11156 doi: 10.1007/978-981-13-1513-8_102Elad, M. From exact to approximate solutions (2010) Sparse and Redundant Representations, pp. 79-109. Cited 19 times. [32] in SpringerGuillemot, C., Le Meur, O. Image Inpainting : Overview and recent advances (2014) IEEE Signal Processing Magazine, 31 (1), art. no. 6678248, pp. 127-144. Cited 407 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79&year=2008 doi: 10.1109/MSP.2013.2273004Barrios, E.M., Marrugo, A.G., Millán, M.S. LRemoving Dust Artifacts in Retinal Images via Dictionary Learning and Sparse-Based Inpainting (Open Access) (2019) 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings, art. no. 8730253. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8719845 ISBN: 978-172811491-0 doi: 10.1109/STSIVA.2019.8730253Aharon, M., Elad, M., Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation (Open Access) (2006) IEEE Transactions on Signal Processing, 54 (11), pp. 4311-4322. Cited 8216 times. doi: 10.1109/TSP.2006.881199Engan, Kjersti, Aase, Sven Ole, Husoy, John Hakon Method of Optimal Directions for frame design (1999) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 5, pp. 2443-2446. Cited 1079 times.Manat, S., Zhang, Z. Matching pursuit in a time-frequency dictionary (1993) IEEE Trans Signal Processing, 12, pp. 3397-3451. Cited 9 times. [37]Otsu, Nobuyuki THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. (Open Access) (1979) IEEE Trans Syst Man Cybern, SMC-9 (1), pp. 62-66. Cited 30286 times. doi: 10.1109/tsmc.1979.4310076Sierra, E., Barrios, E., Marrugo, A. G. Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting (2019) Pattern Recognition and Tracking XXX [39] in M. S. Alam, Ed., 109950L, SPIEhttp://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINALOPA.54.3.51060.pdfOPA.54.3.51060.pdfapplication/pdf801932https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/1/OPA.54.3.51060.pdf054926cd297b08b3f9fa5b9682ca6c80MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTOPA.54.3.51060.pdf.txtOPA.54.3.51060.pdf.txtExtracted texttext/plain43689https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/5/OPA.54.3.51060.pdf.txt95acc1ae5c16f21c49074091897da983MD55THUMBNAILOPA.54.3.51060.pdf.jpgOPA.54.3.51060.pdf.jpgGenerated Thumbnailimage/jpeg7147https://repositorio.utb.edu.co/bitstream/20.500.12585/12319/4/OPA.54.3.51060.pdf.jpgc1cb36bbea17e0b8320e299cdecaf073MD5420.500.12585/12319oai:repositorio.utb.edu.co:20.500.12585/123192023-07-23 00:17:33.863Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=