Power flow solution in direct current grids using the linear conjugate gradient approach

The Colombian power system is being modified by the large-scale integration of renewable energy resources and energy storage systems, in conjunction with the microgrid concept that originates the possibility of alternating and direct current grids or hybrid between them. Here, we propose a classical...

Full description

Autores:
Montoya, O D
Escobar, A F
Garrido Arévalo, Víctor Manuel
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9526
Acceso en línea:
https://hdl.handle.net/20.500.12585/9526
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta
Palabra clave:
Electrónica de potencia
Corriente continua
Distribución de energía eléctrica -- Corriente continua
Power electronics
DC
Electric Power Distribution -- Direct Current
Direct Current
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_2387c20f26fdd9a1993f9a5c772d090e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9526
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Power flow solution in direct current grids using the linear conjugate gradient approach
title Power flow solution in direct current grids using the linear conjugate gradient approach
spellingShingle Power flow solution in direct current grids using the linear conjugate gradient approach
Electrónica de potencia
Corriente continua
Distribución de energía eléctrica -- Corriente continua
Power electronics
DC
Electric Power Distribution -- Direct Current
Direct Current
LEMB
title_short Power flow solution in direct current grids using the linear conjugate gradient approach
title_full Power flow solution in direct current grids using the linear conjugate gradient approach
title_fullStr Power flow solution in direct current grids using the linear conjugate gradient approach
title_full_unstemmed Power flow solution in direct current grids using the linear conjugate gradient approach
title_sort Power flow solution in direct current grids using the linear conjugate gradient approach
dc.creator.fl_str_mv Montoya, O D
Escobar, A F
Garrido Arévalo, Víctor Manuel
dc.contributor.author.none.fl_str_mv Montoya, O D
Escobar, A F
Garrido Arévalo, Víctor Manuel
dc.subject.keywords.spa.fl_str_mv Electrónica de potencia
Corriente continua
Distribución de energía eléctrica -- Corriente continua
Power electronics
DC
Electric Power Distribution -- Direct Current
Direct Current
topic Electrónica de potencia
Corriente continua
Distribución de energía eléctrica -- Corriente continua
Power electronics
DC
Electric Power Distribution -- Direct Current
Direct Current
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The Colombian power system is being modified by the large-scale integration of renewable energy resources and energy storage systems, in conjunction with the microgrid concept that originates the possibility of alternating and direct current grids or hybrid between them. Here, we propose a classical gradient conjugate method to solve linear algebraic equations without matrix inversions, to address the power flow problem in electrical direct current networks with constant power loads, to contribute with the paradigm of microgrids operated in direct current. This methodology can be applied to the power flow equations since the admittance matrix is positive definite and diagonal dominant which guarantees convergence of the power flow problems. Numerical simulations evidence the applicability of the gradient conjugate method to solve power flow problems in direct current networks with radial and mesh topologies. All the simulations are conducted in MATLAB software version 2017a licensed by the Universidad Tecnológica de Bolivar, Colombia.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-09-24
dc.date.accessioned.none.fl_str_mv 2020-11-04T19:30:47Z
dc.date.available.none.fl_str_mv 2020-11-04T19:30:47Z
dc.date.submitted.none.fl_str_mv 2020-10-30
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.citation.spa.fl_str_mv Montoya, O., Escobar, A. and Garrido, V., 2020. Power flow solution in direct current grids using the linear conjugate gradient approach. Journal of Physics: Conference Series, 1448, p.012016.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9526
dc.identifier.url.none.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta
dc.identifier.doi.none.fl_str_mv 144810.1088/1742-6596/1448/1/012016
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O., Escobar, A. and Garrido, V., 2020. Power flow solution in direct current grids using the linear conjugate gradient approach. Journal of Physics: Conference Series, 1448, p.012016.
144810.1088/1742-6596/1448/1/012016
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9526
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Physics: Conference Series, Volume 1448
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/1/59.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/4/59.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/5/59.pdf.jpg
bitstream.checksum.fl_str_mv e20ad307a1c5f3f25af9304a7a7c86b6
5376ad9ce3bd8e53e3a5c4197bcf689a
4460e5956bc1d1639be9ae6146a50347
fc7bd257b80f7931c0cf41dde64aad59
218faa4efe838587aba7f4d8861f479a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021634053373952
spelling Montoya, O D27ff4177-1725-4ebd-bfb1-60814364e669Escobar, A F6078a16e-78be-4f0c-89ca-4f1a0acca361Garrido Arévalo, Víctor Manuel5c72390f-bbbf-414d-bd59-09c2e872bf1d2020-11-04T19:30:47Z2020-11-04T19:30:47Z2019-09-242020-10-30Montoya, O., Escobar, A. and Garrido, V., 2020. Power flow solution in direct current grids using the linear conjugate gradient approach. Journal of Physics: Conference Series, 1448, p.012016.https://hdl.handle.net/20.500.12585/9526https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta144810.1088/1742-6596/1448/1/012016Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe Colombian power system is being modified by the large-scale integration of renewable energy resources and energy storage systems, in conjunction with the microgrid concept that originates the possibility of alternating and direct current grids or hybrid between them. Here, we propose a classical gradient conjugate method to solve linear algebraic equations without matrix inversions, to address the power flow problem in electrical direct current networks with constant power loads, to contribute with the paradigm of microgrids operated in direct current. This methodology can be applied to the power flow equations since the admittance matrix is positive definite and diagonal dominant which guarantees convergence of the power flow problems. Numerical simulations evidence the applicability of the gradient conjugate method to solve power flow problems in direct current networks with radial and mesh topologies. All the simulations are conducted in MATLAB software version 2017a licensed by the Universidad Tecnológica de Bolivar, Colombia.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series, Volume 1448Power flow solution in direct current grids using the linear conjugate gradient approachinfo:eu-repo/semantics/lectureArtículohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Electrónica de potenciaCorriente continuaDistribución de energía eléctrica -- Corriente continuaPower electronicsDCElectric Power Distribution -- Direct CurrentDirect CurrentLEMBCartagena de IndiasInvestigadoresGarces A 2017 Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res. 151 149Montoya O D, Garrido V M, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2019 Power flow analysis in DC grids: Two ˜ alternative numerical methods IEEE Trans. Circuits Syst. II: Express Briefs 66(11) 1865Montoya O D, Grisales-Norena L F, Gonz ˜ alez-Montoya D, Ramos-Paja C, and Garces A 2018 Linear power flow ´ formulation for low-voltage DC power grids Electr. Power Syst. Res. 163 375Simpson-Porco J W, Dorfler F, and Bullo F 2015 On resistive networks of constant-power devices IEEE Trans. Circuits Syst. II: Express Briefs 62(8) 811Nasirian V, Moayedi S, Davoudi A, and Lewis F L 2015 Distributed cooperative control of DC microgrids IEEE Trans. Power Electron. 30(4) 2288Li X, Guo L, Li Y, Hong C, Zhang Y, Guo Z, Huang D, and Wang C 2018 Flexible interlinking and coordinated power control of multiple DC microgrids clusters IEEE Trans. Sustain. Energy 9(2) 904Parhizi S, Lotfi H, Khodaei A, and Bahramirad S 2015 State of the art in research on microgrids: A review IEEE Access 3 890Montoya O D, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2018 Optimal power dispatch of DGs in DC power grids: ˜ A hybrid Gauss-Seidel-genetic-algorithm methodology for solving the OPF problem WSEAS Transactions on Power Systems 13(13) 335Garces A 2018 On the convergence of Newton’s method in power flow studies for DC microgrids ´ IEEE Trans. Power Syst. 33(5) 5770Montoya O D, Gil–Gonzalez W, and Grisales–Nore ´ na L F 2018 Linear–based Newton–Raphson approximation for power ˜ flow solution in DC power grids IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM) (Salto: IEEE)Montoya O D, Grisales-Norena L F, and Gil-Gonz ˜ alez W 2019 Triangular matrix formulation for power flow analysis in ´ radial DC resistive grids with CPLs IEEE Trans. Circuits Syst. II: Express Briefs Early Access 1Shen T, Li Y, and Xiang J 2018 A graph-based power flow method for balanced distribution systems Energies 11(18) 1Montoya O D 2019 On the existence of the power flow solution in DC grids with CPLs through a graph-based method IEEE Trans. Circuits Syst. II: Express Briefs Early Access 1] Li J, Liu F, Wang Z, Low S H, and Mei S 2018 Optimal power flow in stand-alone DC microgrids IEEE Trans. Power Syst. 33(5) 5496Grisales-Norena L F, Gonzalez Montoya D, and Ramos-Paja C 2018 Optimal sizing and location of distributed generators ˜ based on PBIL and PSO techniques Energies 11(1018) 1Leon-Vargas F, Garc ´ ´ıa-Jaramillo M, and Krejci E 2019 Pre-feasibility of wind and solar systems for residential selfsufficiency in four urban locations of Colombia: Implication of new incentives included in law 1715 Renewable Energy 130 1082Dag H and Alvarado F L 1997 Toward improved uses of the conjugate gradient method for power system applications IEEE Trans. Power Syst. 12(3) 1306Montoya O D, Gil-Gonzalez W, and Garces A 2019 Power flow approximation for DC networks with constant power ´ loads via logarithmic transform of voltage magnitudes Electr. Power Syst. Res. 175 105887http://purl.org/coar/resource_type/c_c94fLICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL59.pdf59.pdfPonenciaapplication/pdf640594https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/1/59.pdf5376ad9ce3bd8e53e3a5c4197bcf689aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXT59.pdf.txt59.pdf.txtExtracted texttext/plain18766https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/4/59.pdf.txtfc7bd257b80f7931c0cf41dde64aad59MD54THUMBNAIL59.pdf.jpg59.pdf.jpgGenerated Thumbnailimage/jpeg33461https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/5/59.pdf.jpg218faa4efe838587aba7f4d8861f479aMD5520.500.12585/9526oai:repositorio.utb.edu.co:20.500.12585/95262023-05-26 10:05:53.147Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=