Power flow solution in direct current grids using the linear conjugate gradient approach
The Colombian power system is being modified by the large-scale integration of renewable energy resources and energy storage systems, in conjunction with the microgrid concept that originates the possibility of alternating and direct current grids or hybrid between them. Here, we propose a classical...
- Autores:
-
Montoya, O D
Escobar, A F
Garrido Arévalo, Víctor Manuel
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9526
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9526
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta
- Palabra clave:
- Electrónica de potencia
Corriente continua
Distribución de energía eléctrica -- Corriente continua
Power electronics
DC
Electric Power Distribution -- Direct Current
Direct Current
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2387c20f26fdd9a1993f9a5c772d090e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9526 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Power flow solution in direct current grids using the linear conjugate gradient approach |
title |
Power flow solution in direct current grids using the linear conjugate gradient approach |
spellingShingle |
Power flow solution in direct current grids using the linear conjugate gradient approach Electrónica de potencia Corriente continua Distribución de energía eléctrica -- Corriente continua Power electronics DC Electric Power Distribution -- Direct Current Direct Current LEMB |
title_short |
Power flow solution in direct current grids using the linear conjugate gradient approach |
title_full |
Power flow solution in direct current grids using the linear conjugate gradient approach |
title_fullStr |
Power flow solution in direct current grids using the linear conjugate gradient approach |
title_full_unstemmed |
Power flow solution in direct current grids using the linear conjugate gradient approach |
title_sort |
Power flow solution in direct current grids using the linear conjugate gradient approach |
dc.creator.fl_str_mv |
Montoya, O D Escobar, A F Garrido Arévalo, Víctor Manuel |
dc.contributor.author.none.fl_str_mv |
Montoya, O D Escobar, A F Garrido Arévalo, Víctor Manuel |
dc.subject.keywords.spa.fl_str_mv |
Electrónica de potencia Corriente continua Distribución de energía eléctrica -- Corriente continua Power electronics DC Electric Power Distribution -- Direct Current Direct Current |
topic |
Electrónica de potencia Corriente continua Distribución de energía eléctrica -- Corriente continua Power electronics DC Electric Power Distribution -- Direct Current Direct Current LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The Colombian power system is being modified by the large-scale integration of renewable energy resources and energy storage systems, in conjunction with the microgrid concept that originates the possibility of alternating and direct current grids or hybrid between them. Here, we propose a classical gradient conjugate method to solve linear algebraic equations without matrix inversions, to address the power flow problem in electrical direct current networks with constant power loads, to contribute with the paradigm of microgrids operated in direct current. This methodology can be applied to the power flow equations since the admittance matrix is positive definite and diagonal dominant which guarantees convergence of the power flow problems. Numerical simulations evidence the applicability of the gradient conjugate method to solve power flow problems in direct current networks with radial and mesh topologies. All the simulations are conducted in MATLAB software version 2017a licensed by the Universidad Tecnológica de Bolivar, Colombia. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-09-24 |
dc.date.accessioned.none.fl_str_mv |
2020-11-04T19:30:47Z |
dc.date.available.none.fl_str_mv |
2020-11-04T19:30:47Z |
dc.date.submitted.none.fl_str_mv |
2020-10-30 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O., Escobar, A. and Garrido, V., 2020. Power flow solution in direct current grids using the linear conjugate gradient approach. Journal of Physics: Conference Series, 1448, p.012016. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9526 |
dc.identifier.url.none.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta |
dc.identifier.doi.none.fl_str_mv |
144810.1088/1742-6596/1448/1/012016 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O., Escobar, A. and Garrido, V., 2020. Power flow solution in direct current grids using the linear conjugate gradient approach. Journal of Physics: Conference Series, 1448, p.012016. 144810.1088/1742-6596/1448/1/012016 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9526 https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Journal of Physics: Conference Series, Volume 1448 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/1/59.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/4/59.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/5/59.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 5376ad9ce3bd8e53e3a5c4197bcf689a 4460e5956bc1d1639be9ae6146a50347 fc7bd257b80f7931c0cf41dde64aad59 218faa4efe838587aba7f4d8861f479a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021634053373952 |
spelling |
Montoya, O D27ff4177-1725-4ebd-bfb1-60814364e669Escobar, A F6078a16e-78be-4f0c-89ca-4f1a0acca361Garrido Arévalo, Víctor Manuel5c72390f-bbbf-414d-bd59-09c2e872bf1d2020-11-04T19:30:47Z2020-11-04T19:30:47Z2019-09-242020-10-30Montoya, O., Escobar, A. and Garrido, V., 2020. Power flow solution in direct current grids using the linear conjugate gradient approach. Journal of Physics: Conference Series, 1448, p.012016.https://hdl.handle.net/20.500.12585/9526https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta144810.1088/1742-6596/1448/1/012016Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe Colombian power system is being modified by the large-scale integration of renewable energy resources and energy storage systems, in conjunction with the microgrid concept that originates the possibility of alternating and direct current grids or hybrid between them. Here, we propose a classical gradient conjugate method to solve linear algebraic equations without matrix inversions, to address the power flow problem in electrical direct current networks with constant power loads, to contribute with the paradigm of microgrids operated in direct current. This methodology can be applied to the power flow equations since the admittance matrix is positive definite and diagonal dominant which guarantees convergence of the power flow problems. Numerical simulations evidence the applicability of the gradient conjugate method to solve power flow problems in direct current networks with radial and mesh topologies. All the simulations are conducted in MATLAB software version 2017a licensed by the Universidad Tecnológica de Bolivar, Colombia.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series, Volume 1448Power flow solution in direct current grids using the linear conjugate gradient approachinfo:eu-repo/semantics/lectureArtículohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Electrónica de potenciaCorriente continuaDistribución de energía eléctrica -- Corriente continuaPower electronicsDCElectric Power Distribution -- Direct CurrentDirect CurrentLEMBCartagena de IndiasInvestigadoresGarces A 2017 Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res. 151 149Montoya O D, Garrido V M, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2019 Power flow analysis in DC grids: Two ˜ alternative numerical methods IEEE Trans. Circuits Syst. II: Express Briefs 66(11) 1865Montoya O D, Grisales-Norena L F, Gonz ˜ alez-Montoya D, Ramos-Paja C, and Garces A 2018 Linear power flow ´ formulation for low-voltage DC power grids Electr. Power Syst. Res. 163 375Simpson-Porco J W, Dorfler F, and Bullo F 2015 On resistive networks of constant-power devices IEEE Trans. Circuits Syst. II: Express Briefs 62(8) 811Nasirian V, Moayedi S, Davoudi A, and Lewis F L 2015 Distributed cooperative control of DC microgrids IEEE Trans. Power Electron. 30(4) 2288Li X, Guo L, Li Y, Hong C, Zhang Y, Guo Z, Huang D, and Wang C 2018 Flexible interlinking and coordinated power control of multiple DC microgrids clusters IEEE Trans. Sustain. Energy 9(2) 904Parhizi S, Lotfi H, Khodaei A, and Bahramirad S 2015 State of the art in research on microgrids: A review IEEE Access 3 890Montoya O D, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2018 Optimal power dispatch of DGs in DC power grids: ˜ A hybrid Gauss-Seidel-genetic-algorithm methodology for solving the OPF problem WSEAS Transactions on Power Systems 13(13) 335Garces A 2018 On the convergence of Newton’s method in power flow studies for DC microgrids ´ IEEE Trans. Power Syst. 33(5) 5770Montoya O D, Gil–Gonzalez W, and Grisales–Nore ´ na L F 2018 Linear–based Newton–Raphson approximation for power ˜ flow solution in DC power grids IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM) (Salto: IEEE)Montoya O D, Grisales-Norena L F, and Gil-Gonz ˜ alez W 2019 Triangular matrix formulation for power flow analysis in ´ radial DC resistive grids with CPLs IEEE Trans. Circuits Syst. II: Express Briefs Early Access 1Shen T, Li Y, and Xiang J 2018 A graph-based power flow method for balanced distribution systems Energies 11(18) 1Montoya O D 2019 On the existence of the power flow solution in DC grids with CPLs through a graph-based method IEEE Trans. Circuits Syst. II: Express Briefs Early Access 1] Li J, Liu F, Wang Z, Low S H, and Mei S 2018 Optimal power flow in stand-alone DC microgrids IEEE Trans. Power Syst. 33(5) 5496Grisales-Norena L F, Gonzalez Montoya D, and Ramos-Paja C 2018 Optimal sizing and location of distributed generators ˜ based on PBIL and PSO techniques Energies 11(1018) 1Leon-Vargas F, Garc ´ ´ıa-Jaramillo M, and Krejci E 2019 Pre-feasibility of wind and solar systems for residential selfsufficiency in four urban locations of Colombia: Implication of new incentives included in law 1715 Renewable Energy 130 1082Dag H and Alvarado F L 1997 Toward improved uses of the conjugate gradient method for power system applications IEEE Trans. Power Syst. 12(3) 1306Montoya O D, Gil-Gonzalez W, and Garces A 2019 Power flow approximation for DC networks with constant power ´ loads via logarithmic transform of voltage magnitudes Electr. Power Syst. Res. 175 105887http://purl.org/coar/resource_type/c_c94fLICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL59.pdf59.pdfPonenciaapplication/pdf640594https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/1/59.pdf5376ad9ce3bd8e53e3a5c4197bcf689aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXT59.pdf.txt59.pdf.txtExtracted texttext/plain18766https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/4/59.pdf.txtfc7bd257b80f7931c0cf41dde64aad59MD54THUMBNAIL59.pdf.jpg59.pdf.jpgGenerated Thumbnailimage/jpeg33461https://repositorio.utb.edu.co/bitstream/20.500.12585/9526/5/59.pdf.jpg218faa4efe838587aba7f4d8861f479aMD5520.500.12585/9526oai:repositorio.utb.edu.co:20.500.12585/95262023-05-26 10:05:53.147Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |