Fringe quality map for fringe projection profilometry in LabVIEW
The phase retrieval process is mainly affected by local shadows, irregular surface brightness and fringe discontinuities. To overcome these problems, image-processing strategies are carried out such as binary masks, interpolation techniques, and filtering. Similarly, many unwrapping algorithms have...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8734
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8734
- Palabra clave:
- 3D reconstruction
Fringe projection
Fringe quality map
Phase retrieval
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_223b67ac12be3a9eddf488fa3bdb3d82 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8734 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Fringe quality map for fringe projection profilometry in LabVIEW |
title |
Fringe quality map for fringe projection profilometry in LabVIEW |
spellingShingle |
Fringe quality map for fringe projection profilometry in LabVIEW 3D reconstruction Fringe projection Fringe quality map Phase retrieval |
title_short |
Fringe quality map for fringe projection profilometry in LabVIEW |
title_full |
Fringe quality map for fringe projection profilometry in LabVIEW |
title_fullStr |
Fringe quality map for fringe projection profilometry in LabVIEW |
title_full_unstemmed |
Fringe quality map for fringe projection profilometry in LabVIEW |
title_sort |
Fringe quality map for fringe projection profilometry in LabVIEW |
dc.subject.keywords.none.fl_str_mv |
3D reconstruction Fringe projection Fringe quality map Phase retrieval |
topic |
3D reconstruction Fringe projection Fringe quality map Phase retrieval |
description |
The phase retrieval process is mainly affected by local shadows, irregular surface brightness and fringe discontinuities. To overcome these problems, image-processing strategies are carried out such as binary masks, interpolation techniques, and filtering. Similarly, many unwrapping algorithms have been developed to handle phase unwrapping errors in two-dimensional regions. The presence of error-prone areas can be visualized during the acquisition stage avoiding the use of image processing strategies and sophisticated phase unwrapping algorithms, which in many cases represent high computational costs and long execution times. To help overcome these problems, we propose a Fringe Quality Map based on a phase residue analysis to estimate error-prone areas during acquisition. The software was fully implemented in LabVIEW, and we provide the software as supplementary material. Experimental results demonstrate that the proposed method estimates areas with poor contrast, which lead to unwrapping errors, as well as phase errors in a more complex 3D shape. © Sociedad Española de Óptica. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T19:05:13Z |
dc.date.available.none.fl_str_mv |
2019-11-06T19:05:13Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Optica Pura y Aplicada; Vol. 51, Núm. 4 |
dc.identifier.issn.none.fl_str_mv |
0030-3917 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8734 |
dc.identifier.doi.none.fl_str_mv |
10.7149/OPA.51.4.50302 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
identifier_str_mv |
Optica Pura y Aplicada; Vol. 51, Núm. 4 0030-3917 10.7149/OPA.51.4.50302 Universidad Tecnológica de Bolívar Repositorio UTB |
url |
https://hdl.handle.net/20.500.12585/8734 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Espanola de Optica |
publisher.none.fl_str_mv |
Sociedad Espanola de Optica |
dc.source.none.fl_str_mv |
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85062274079&doi=10.7149%2fOPA.51.4.50302&partnerID=40&md5=5b3668a9c4b450886cbc0394146bf606 Scopus 57192270016 Scopus 57117284600 Scopus 36142156300 Scopus 7004348301 Scopus 24329839300 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/1/DOI10_7149OPA_51_4_50302.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/4/DOI10_7149OPA_51_4_50302.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/5/DOI10_7149OPA_51_4_50302.pdf.jpg |
bitstream.checksum.fl_str_mv |
a69cb9050d0749a38ca2e7de30b75862 945f4281b3018ced1be225a77d4129d7 9f728a3c14ba723ed34369a8b56a8c83 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021687066230784 |
spelling |
2019-11-06T19:05:13Z2019-11-06T19:05:13Z2018Optica Pura y Aplicada; Vol. 51, Núm. 40030-3917https://hdl.handle.net/20.500.12585/873410.7149/OPA.51.4.50302Universidad Tecnológica de BolívarRepositorio UTBThe phase retrieval process is mainly affected by local shadows, irregular surface brightness and fringe discontinuities. To overcome these problems, image-processing strategies are carried out such as binary masks, interpolation techniques, and filtering. Similarly, many unwrapping algorithms have been developed to handle phase unwrapping errors in two-dimensional regions. The presence of error-prone areas can be visualized during the acquisition stage avoiding the use of image processing strategies and sophisticated phase unwrapping algorithms, which in many cases represent high computational costs and long execution times. To help overcome these problems, we propose a Fringe Quality Map based on a phase residue analysis to estimate error-prone areas during acquisition. The software was fully implemented in LabVIEW, and we provide the software as supplementary material. Experimental results demonstrate that the proposed method estimates areas with poor contrast, which lead to unwrapping errors, as well as phase errors in a more complex 3D shape. © Sociedad Española de Óptica.Recurso electrónicoapplication/pdfengSociedad Espanola de Opticahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85062274079&doi=10.7149%2fOPA.51.4.50302&partnerID=40&md5=5b3668a9c4b450886cbc0394146bf606Scopus 57192270016Scopus 57117284600Scopus 36142156300Scopus 7004348301Scopus 24329839300Fringe quality map for fringe projection profilometry in LabVIEWinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb13D reconstructionFringe projectionFringe quality mapPhase retrievalPineda, J.Vargas, R.Romero, L.A.Meneses, J.Marrugo Hernández, Andrés GuillermoTakeda, M., Mutoh, K., "Fourier transform profilometry for the automatic measurement of 3-D object shapes.," (1983) Appl Opt, 22, p. 3977Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q., "Phase shifting algorithms for fringe projection profilometry: A review," (2018) Optics and Lasers in Engineering, 109, pp. 23-59Zhang, S., (2016) High-Speed 3D Imaging with Digital Fringe Projection Techniques, , CRC PressZhang, S., (2013) Handbook of 3D machine vision: Optical metrology and imaging, , CRC pressSu, X., Zhang, Q., "Dynamic 3-D shape measurement method: a review," (2010) Optics and Lasers in Engineering, 48, pp. 191-204Hu, Y., Chen, Q., Zhang, Y., Feng, S., Tao, T., Li, H., Yin, W., Zuo, C., "Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry," (2018) Applied optics, 57, pp. 772-780Su, X., Chen, W., "Reliability-guided phase unwrapping algorithm: a review," (2004) Optics and Lasers in Engineering, 42, pp. 245-261Bone, D.J., "Fourier fringe analysis: the two-dimensional phase unwrapping problem," (1991) Appl Opt, 30, pp. 3627-3632Vargas, R., Pineda, J., Marrugo, A.G., Romero, L.A., "Background intensity removal in structured light three-dimensional reconstruction," (2016) presented at the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), pp. 1-6Luo, F., Chen, W., Su, X., "Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform," (2016) Optics Communications, 365, pp. 76-85Ghiglia, D.C., Pritt, M.D., (1998) Two-dimensional phase unwrapping: theory, algorithms, and software, , Wiley New YorkBudianto, D.P., Lun, K., Chan, Y.-H., "Robust Single-shot Fringe Projection Profilometry Based on Morphological Component Analysis," (2018) IEEE Transactions on Image Processing, 27, pp. 5393-5405Chen, C.W., Zebker, H.A., "Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models," (2002) IEEE Transactions on Geoscience and Remote Sensing, 40, pp. 1709-1719Goldstein, R.M., Zebker, H.A., Werner, C.L., "Satellite radar interferometry: Two-dimensional phase unwrapping," (1988) Radio science, 23, pp. 713-720Pineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., "Fringe Quality Map for Fringe Projection Profilometry in LabVIEW,", , figshare 2018, [retrieved 4 september 2018]Marrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., "Fourier Transform Profilometry in LabVIEW," (2018) Digital Systems, , Asadpour Vahid (Ed.), Publisher: IntechOpenBarrios, J., Moron, M., Barrios, C., Contreras, R., Gonzalez, A., Meneses, J., "Three-dimensional scanning of the cornea by using a structured light module," (2017) Opt. Pura y Apl, 50, pp. 351-357Lin, J.F., Su, X., "Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes," (1995) Optical Engineering, 34, pp. 3297-3303http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_7149OPA_51_4_50302.pdfapplication/pdf862588https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/1/DOI10_7149OPA_51_4_50302.pdfa69cb9050d0749a38ca2e7de30b75862MD51TEXTDOI10_7149OPA_51_4_50302.pdf.txtDOI10_7149OPA_51_4_50302.pdf.txtExtracted texttext/plain23583https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/4/DOI10_7149OPA_51_4_50302.pdf.txt945f4281b3018ced1be225a77d4129d7MD54THUMBNAILDOI10_7149OPA_51_4_50302.pdf.jpgDOI10_7149OPA_51_4_50302.pdf.jpgGenerated Thumbnailimage/jpeg85017https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/5/DOI10_7149OPA_51_4_50302.pdf.jpg9f728a3c14ba723ed34369a8b56a8c83MD5520.500.12585/8734oai:repositorio.utb.edu.co:20.500.12585/87342023-05-26 16:25:04.913Repositorio Institucional UTBrepositorioutb@utb.edu.co |