Fringe quality map for fringe projection profilometry in LabVIEW

The phase retrieval process is mainly affected by local shadows, irregular surface brightness and fringe discontinuities. To overcome these problems, image-processing strategies are carried out such as binary masks, interpolation techniques, and filtering. Similarly, many unwrapping algorithms have...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8734
Acceso en línea:
https://hdl.handle.net/20.500.12585/8734
Palabra clave:
3D reconstruction
Fringe projection
Fringe quality map
Phase retrieval
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_223b67ac12be3a9eddf488fa3bdb3d82
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8734
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Fringe quality map for fringe projection profilometry in LabVIEW
title Fringe quality map for fringe projection profilometry in LabVIEW
spellingShingle Fringe quality map for fringe projection profilometry in LabVIEW
3D reconstruction
Fringe projection
Fringe quality map
Phase retrieval
title_short Fringe quality map for fringe projection profilometry in LabVIEW
title_full Fringe quality map for fringe projection profilometry in LabVIEW
title_fullStr Fringe quality map for fringe projection profilometry in LabVIEW
title_full_unstemmed Fringe quality map for fringe projection profilometry in LabVIEW
title_sort Fringe quality map for fringe projection profilometry in LabVIEW
dc.subject.keywords.none.fl_str_mv 3D reconstruction
Fringe projection
Fringe quality map
Phase retrieval
topic 3D reconstruction
Fringe projection
Fringe quality map
Phase retrieval
description The phase retrieval process is mainly affected by local shadows, irregular surface brightness and fringe discontinuities. To overcome these problems, image-processing strategies are carried out such as binary masks, interpolation techniques, and filtering. Similarly, many unwrapping algorithms have been developed to handle phase unwrapping errors in two-dimensional regions. The presence of error-prone areas can be visualized during the acquisition stage avoiding the use of image processing strategies and sophisticated phase unwrapping algorithms, which in many cases represent high computational costs and long execution times. To help overcome these problems, we propose a Fringe Quality Map based on a phase residue analysis to estimate error-prone areas during acquisition. The software was fully implemented in LabVIEW, and we provide the software as supplementary material. Experimental results demonstrate that the proposed method estimates areas with poor contrast, which lead to unwrapping errors, as well as phase errors in a more complex 3D shape. © Sociedad Española de Óptica.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:13Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:13Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Optica Pura y Aplicada; Vol. 51, Núm. 4
dc.identifier.issn.none.fl_str_mv 0030-3917
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8734
dc.identifier.doi.none.fl_str_mv 10.7149/OPA.51.4.50302
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Optica Pura y Aplicada; Vol. 51, Núm. 4
0030-3917
10.7149/OPA.51.4.50302
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8734
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedad Espanola de Optica
publisher.none.fl_str_mv Sociedad Espanola de Optica
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85062274079&doi=10.7149%2fOPA.51.4.50302&partnerID=40&md5=5b3668a9c4b450886cbc0394146bf606
Scopus 57192270016
Scopus 57117284600
Scopus 36142156300
Scopus 7004348301
Scopus 24329839300
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/1/DOI10_7149OPA_51_4_50302.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/4/DOI10_7149OPA_51_4_50302.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/5/DOI10_7149OPA_51_4_50302.pdf.jpg
bitstream.checksum.fl_str_mv a69cb9050d0749a38ca2e7de30b75862
945f4281b3018ced1be225a77d4129d7
9f728a3c14ba723ed34369a8b56a8c83
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021687066230784
spelling 2019-11-06T19:05:13Z2019-11-06T19:05:13Z2018Optica Pura y Aplicada; Vol. 51, Núm. 40030-3917https://hdl.handle.net/20.500.12585/873410.7149/OPA.51.4.50302Universidad Tecnológica de BolívarRepositorio UTBThe phase retrieval process is mainly affected by local shadows, irregular surface brightness and fringe discontinuities. To overcome these problems, image-processing strategies are carried out such as binary masks, interpolation techniques, and filtering. Similarly, many unwrapping algorithms have been developed to handle phase unwrapping errors in two-dimensional regions. The presence of error-prone areas can be visualized during the acquisition stage avoiding the use of image processing strategies and sophisticated phase unwrapping algorithms, which in many cases represent high computational costs and long execution times. To help overcome these problems, we propose a Fringe Quality Map based on a phase residue analysis to estimate error-prone areas during acquisition. The software was fully implemented in LabVIEW, and we provide the software as supplementary material. Experimental results demonstrate that the proposed method estimates areas with poor contrast, which lead to unwrapping errors, as well as phase errors in a more complex 3D shape. © Sociedad Española de Óptica.Recurso electrónicoapplication/pdfengSociedad Espanola de Opticahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85062274079&doi=10.7149%2fOPA.51.4.50302&partnerID=40&md5=5b3668a9c4b450886cbc0394146bf606Scopus 57192270016Scopus 57117284600Scopus 36142156300Scopus 7004348301Scopus 24329839300Fringe quality map for fringe projection profilometry in LabVIEWinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb13D reconstructionFringe projectionFringe quality mapPhase retrievalPineda, J.Vargas, R.Romero, L.A.Meneses, J.Marrugo Hernández, Andrés GuillermoTakeda, M., Mutoh, K., "Fourier transform profilometry for the automatic measurement of 3-D object shapes.," (1983) Appl Opt, 22, p. 3977Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q., "Phase shifting algorithms for fringe projection profilometry: A review," (2018) Optics and Lasers in Engineering, 109, pp. 23-59Zhang, S., (2016) High-Speed 3D Imaging with Digital Fringe Projection Techniques, , CRC PressZhang, S., (2013) Handbook of 3D machine vision: Optical metrology and imaging, , CRC pressSu, X., Zhang, Q., "Dynamic 3-D shape measurement method: a review," (2010) Optics and Lasers in Engineering, 48, pp. 191-204Hu, Y., Chen, Q., Zhang, Y., Feng, S., Tao, T., Li, H., Yin, W., Zuo, C., "Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry," (2018) Applied optics, 57, pp. 772-780Su, X., Chen, W., "Reliability-guided phase unwrapping algorithm: a review," (2004) Optics and Lasers in Engineering, 42, pp. 245-261Bone, D.J., "Fourier fringe analysis: the two-dimensional phase unwrapping problem," (1991) Appl Opt, 30, pp. 3627-3632Vargas, R., Pineda, J., Marrugo, A.G., Romero, L.A., "Background intensity removal in structured light three-dimensional reconstruction," (2016) presented at the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), pp. 1-6Luo, F., Chen, W., Su, X., "Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform," (2016) Optics Communications, 365, pp. 76-85Ghiglia, D.C., Pritt, M.D., (1998) Two-dimensional phase unwrapping: theory, algorithms, and software, , Wiley New YorkBudianto, D.P., Lun, K., Chan, Y.-H., "Robust Single-shot Fringe Projection Profilometry Based on Morphological Component Analysis," (2018) IEEE Transactions on Image Processing, 27, pp. 5393-5405Chen, C.W., Zebker, H.A., "Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models," (2002) IEEE Transactions on Geoscience and Remote Sensing, 40, pp. 1709-1719Goldstein, R.M., Zebker, H.A., Werner, C.L., "Satellite radar interferometry: Two-dimensional phase unwrapping," (1988) Radio science, 23, pp. 713-720Pineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., "Fringe Quality Map for Fringe Projection Profilometry in LabVIEW,", , figshare 2018, [retrieved 4 september 2018]Marrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., "Fourier Transform Profilometry in LabVIEW," (2018) Digital Systems, , Asadpour Vahid (Ed.), Publisher: IntechOpenBarrios, J., Moron, M., Barrios, C., Contreras, R., Gonzalez, A., Meneses, J., "Three-dimensional scanning of the cornea by using a structured light module," (2017) Opt. Pura y Apl, 50, pp. 351-357Lin, J.F., Su, X., "Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes," (1995) Optical Engineering, 34, pp. 3297-3303http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_7149OPA_51_4_50302.pdfapplication/pdf862588https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/1/DOI10_7149OPA_51_4_50302.pdfa69cb9050d0749a38ca2e7de30b75862MD51TEXTDOI10_7149OPA_51_4_50302.pdf.txtDOI10_7149OPA_51_4_50302.pdf.txtExtracted texttext/plain23583https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/4/DOI10_7149OPA_51_4_50302.pdf.txt945f4281b3018ced1be225a77d4129d7MD54THUMBNAILDOI10_7149OPA_51_4_50302.pdf.jpgDOI10_7149OPA_51_4_50302.pdf.jpgGenerated Thumbnailimage/jpeg85017https://repositorio.utb.edu.co/bitstream/20.500.12585/8734/5/DOI10_7149OPA_51_4_50302.pdf.jpg9f728a3c14ba723ed34369a8b56a8c83MD5520.500.12585/8734oai:repositorio.utb.edu.co:20.500.12585/87342023-05-26 16:25:04.913Repositorio Institucional UTBrepositorioutb@utb.edu.co