Advancements in quantum machine learning for intrusion detection: A comprehensive overview
This chapter provides a comprehensive overview of the recent developments in quantum machine learning for intrusion detection systems. The authors review the state of the art based on the published work “Quantum Machine Learning for Intrusion Detection of Distributed Denial of Service Attacks: A Com...
- Autores:
-
Payares, Esteban
Martinez-Santos, Juan Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12587
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12587
- Palabra clave:
- Quantum Machine Learning
Machine Learning
Quantum Computing
LEMB
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UTB2_21da57567720537de56df3fd611ff5e7 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12587 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview |
title |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview |
spellingShingle |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview Quantum Machine Learning Machine Learning Quantum Computing LEMB |
title_short |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview |
title_full |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview |
title_fullStr |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview |
title_full_unstemmed |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview |
title_sort |
Advancements in quantum machine learning for intrusion detection: A comprehensive overview |
dc.creator.fl_str_mv |
Payares, Esteban Martinez-Santos, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Payares, Esteban Martinez-Santos, Juan Carlos |
dc.subject.keywords.spa.fl_str_mv |
Quantum Machine Learning Machine Learning Quantum Computing |
topic |
Quantum Machine Learning Machine Learning Quantum Computing LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This chapter provides a comprehensive overview of the recent developments in quantum machine learning for intrusion detection systems. The authors review the state of the art based on the published work “Quantum Machine Learning for Intrusion Detection of Distributed Denial of Service Attacks: A Comparative View” and its relevant citations. The chapter discusses three quantum models, including quantum support vector machines, hybrid quantum-classical neural networks, and a two-circuit ensemble model, which run parallel on two quantum processing units. The authors compare the performance of these models in terms of accuracy and computational resource consumption. Their work demonstrates the effectiveness of quantum models in supporting current and future cybersecurity systems, achieving close to 100% accuracy, with 96% being the worst-case scenario. The chapter concludes with future research directions for this promising field. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-11T12:28:37Z |
dc.date.available.none.fl_str_mv |
2023-12-11T12:28:37Z |
dc.date.issued.none.fl_str_mv |
2023-09-07 |
dc.date.submitted.none.fl_str_mv |
2023-12-09 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Payares, E. & Martinez-Santos, J. C. (2023). Advancements in Quantum Machine Learning for Intrusion Detection: A Comprehensive Overview. In N. Mateus-Coelho & M. Cruz-Cunha (Eds.), Exploring Cyber Criminals and Data Privacy Measures (pp. 167-176). IGI Global. https://doi.org/10.4018/978-1-6684-8422-7.ch009 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12587 |
dc.identifier.doi.none.fl_str_mv |
DOI: 10.4018/978-1-6684-8422-7.ch009 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Payares, E. & Martinez-Santos, J. C. (2023). Advancements in Quantum Machine Learning for Intrusion Detection: A Comprehensive Overview. In N. Mateus-Coelho & M. Cruz-Cunha (Eds.), Exploring Cyber Criminals and Data Privacy Measures (pp. 167-176). IGI Global. https://doi.org/10.4018/978-1-6684-8422-7.ch009 DOI: 10.4018/978-1-6684-8422-7.ch009 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12587 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
3 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.source.spa.fl_str_mv |
Advancements in Quantum Machine Learning for Intrusion Detection |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/1/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/3/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/4/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
6caf0d48abb114efbc112e3c98eac5da e20ad307a1c5f3f25af9304a7a7c86b6 96722270b3063d34b254979634eacbf1 14818ad064d91bdc2f17e90f3e8a0e89 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021784668733440 |
spelling |
Payares, Estebane0aac5f6-3be2-4211-a602-9a0f32c4602dMartinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe773182023-12-11T12:28:37Z2023-12-11T12:28:37Z2023-09-072023-12-09Payares, E. & Martinez-Santos, J. C. (2023). Advancements in Quantum Machine Learning for Intrusion Detection: A Comprehensive Overview. In N. Mateus-Coelho & M. Cruz-Cunha (Eds.), Exploring Cyber Criminals and Data Privacy Measures (pp. 167-176). IGI Global. https://doi.org/10.4018/978-1-6684-8422-7.ch009https://hdl.handle.net/20.500.12585/12587DOI: 10.4018/978-1-6684-8422-7.ch009Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis chapter provides a comprehensive overview of the recent developments in quantum machine learning for intrusion detection systems. The authors review the state of the art based on the published work “Quantum Machine Learning for Intrusion Detection of Distributed Denial of Service Attacks: A Comparative View” and its relevant citations. The chapter discusses three quantum models, including quantum support vector machines, hybrid quantum-classical neural networks, and a two-circuit ensemble model, which run parallel on two quantum processing units. The authors compare the performance of these models in terms of accuracy and computational resource consumption. Their work demonstrates the effectiveness of quantum models in supporting current and future cybersecurity systems, achieving close to 100% accuracy, with 96% being the worst-case scenario. The chapter concludes with future research directions for this promising field.3 páginasapplication/pdfengAdvancements in Quantum Machine Learning for Intrusion DetectionAdvancements in quantum machine learning for intrusion detection: A comprehensive overviewinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_3248Quantum Machine LearningMachine LearningQuantum ComputingLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasIngeniería de Sistemas y ComputaciónPúblico generalhttp://purl.org/coar/resource_type/c_3248ORIGINALadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdfadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdfapplication/pdf324619https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/1/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf6caf0d48abb114efbc112e3c98eac5daMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.txtadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.txtExtracted texttext/plain6714https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/3/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.txt96722270b3063d34b254979634eacbf1MD53THUMBNAILadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.jpgadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.jpgGenerated Thumbnailimage/jpeg5070https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/4/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.jpg14818ad064d91bdc2f17e90f3e8a0e89MD5420.500.12585/12587oai:repositorio.utb.edu.co:20.500.12585/125872023-12-12 00:00:36.878Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |