Advancements in quantum machine learning for intrusion detection: A comprehensive overview

This chapter provides a comprehensive overview of the recent developments in quantum machine learning for intrusion detection systems. The authors review the state of the art based on the published work “Quantum Machine Learning for Intrusion Detection of Distributed Denial of Service Attacks: A Com...

Full description

Autores:
Payares, Esteban
Martinez-Santos, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12587
Acceso en línea:
https://hdl.handle.net/20.500.12585/12587
Palabra clave:
Quantum Machine Learning
Machine Learning
Quantum Computing
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_21da57567720537de56df3fd611ff5e7
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12587
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Advancements in quantum machine learning for intrusion detection: A comprehensive overview
title Advancements in quantum machine learning for intrusion detection: A comprehensive overview
spellingShingle Advancements in quantum machine learning for intrusion detection: A comprehensive overview
Quantum Machine Learning
Machine Learning
Quantum Computing
LEMB
title_short Advancements in quantum machine learning for intrusion detection: A comprehensive overview
title_full Advancements in quantum machine learning for intrusion detection: A comprehensive overview
title_fullStr Advancements in quantum machine learning for intrusion detection: A comprehensive overview
title_full_unstemmed Advancements in quantum machine learning for intrusion detection: A comprehensive overview
title_sort Advancements in quantum machine learning for intrusion detection: A comprehensive overview
dc.creator.fl_str_mv Payares, Esteban
Martinez-Santos, Juan Carlos
dc.contributor.author.none.fl_str_mv Payares, Esteban
Martinez-Santos, Juan Carlos
dc.subject.keywords.spa.fl_str_mv Quantum Machine Learning
Machine Learning
Quantum Computing
topic Quantum Machine Learning
Machine Learning
Quantum Computing
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This chapter provides a comprehensive overview of the recent developments in quantum machine learning for intrusion detection systems. The authors review the state of the art based on the published work “Quantum Machine Learning for Intrusion Detection of Distributed Denial of Service Attacks: A Comparative View” and its relevant citations. The chapter discusses three quantum models, including quantum support vector machines, hybrid quantum-classical neural networks, and a two-circuit ensemble model, which run parallel on two quantum processing units. The authors compare the performance of these models in terms of accuracy and computational resource consumption. Their work demonstrates the effectiveness of quantum models in supporting current and future cybersecurity systems, achieving close to 100% accuracy, with 96% being the worst-case scenario. The chapter concludes with future research directions for this promising field.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-11T12:28:37Z
dc.date.available.none.fl_str_mv 2023-12-11T12:28:37Z
dc.date.issued.none.fl_str_mv 2023-09-07
dc.date.submitted.none.fl_str_mv 2023-12-09
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Payares, E. & Martinez-Santos, J. C. (2023). Advancements in Quantum Machine Learning for Intrusion Detection: A Comprehensive Overview. In N. Mateus-Coelho & M. Cruz-Cunha (Eds.), Exploring Cyber Criminals and Data Privacy Measures (pp. 167-176). IGI Global. https://doi.org/10.4018/978-1-6684-8422-7.ch009
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12587
dc.identifier.doi.none.fl_str_mv DOI: 10.4018/978-1-6684-8422-7.ch009
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Payares, E. & Martinez-Santos, J. C. (2023). Advancements in Quantum Machine Learning for Intrusion Detection: A Comprehensive Overview. In N. Mateus-Coelho & M. Cruz-Cunha (Eds.), Exploring Cyber Criminals and Data Privacy Measures (pp. 167-176). IGI Global. https://doi.org/10.4018/978-1-6684-8422-7.ch009
DOI: 10.4018/978-1-6684-8422-7.ch009
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12587
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 3 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.discipline.spa.fl_str_mv Ingeniería de Sistemas y Computación
dc.source.spa.fl_str_mv Advancements in Quantum Machine Learning for Intrusion Detection
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/1/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/3/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/4/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 6caf0d48abb114efbc112e3c98eac5da
e20ad307a1c5f3f25af9304a7a7c86b6
96722270b3063d34b254979634eacbf1
14818ad064d91bdc2f17e90f3e8a0e89
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021784668733440
spelling Payares, Estebane0aac5f6-3be2-4211-a602-9a0f32c4602dMartinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe773182023-12-11T12:28:37Z2023-12-11T12:28:37Z2023-09-072023-12-09Payares, E. & Martinez-Santos, J. C. (2023). Advancements in Quantum Machine Learning for Intrusion Detection: A Comprehensive Overview. In N. Mateus-Coelho & M. Cruz-Cunha (Eds.), Exploring Cyber Criminals and Data Privacy Measures (pp. 167-176). IGI Global. https://doi.org/10.4018/978-1-6684-8422-7.ch009https://hdl.handle.net/20.500.12585/12587DOI: 10.4018/978-1-6684-8422-7.ch009Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis chapter provides a comprehensive overview of the recent developments in quantum machine learning for intrusion detection systems. The authors review the state of the art based on the published work “Quantum Machine Learning for Intrusion Detection of Distributed Denial of Service Attacks: A Comparative View” and its relevant citations. The chapter discusses three quantum models, including quantum support vector machines, hybrid quantum-classical neural networks, and a two-circuit ensemble model, which run parallel on two quantum processing units. The authors compare the performance of these models in terms of accuracy and computational resource consumption. Their work demonstrates the effectiveness of quantum models in supporting current and future cybersecurity systems, achieving close to 100% accuracy, with 96% being the worst-case scenario. The chapter concludes with future research directions for this promising field.3 páginasapplication/pdfengAdvancements in Quantum Machine Learning for Intrusion DetectionAdvancements in quantum machine learning for intrusion detection: A comprehensive overviewinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_3248Quantum Machine LearningMachine LearningQuantum ComputingLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasIngeniería de Sistemas y ComputaciónPúblico generalhttp://purl.org/coar/resource_type/c_3248ORIGINALadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdfadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdfapplication/pdf324619https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/1/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf6caf0d48abb114efbc112e3c98eac5daMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.txtadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.txtExtracted texttext/plain6714https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/3/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.txt96722270b3063d34b254979634eacbf1MD53THUMBNAILadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.jpgadvancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview (1).pdf.jpgGenerated Thumbnailimage/jpeg5070https://repositorio.utb.edu.co/bitstream/20.500.12585/12587/4/advancements-in-quantum-machine-learning-for-intrusion-detection_-a-comprehensive-overview%20%281%29.pdf.jpg14818ad064d91bdc2f17e90f3e8a0e89MD5420.500.12585/12587oai:repositorio.utb.edu.co:20.500.12585/125872023-12-12 00:00:36.878Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=