A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids

A novel full Boundary Element Formulation for the harmonic analysis of elastic membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the acoustic-wave equation for homo...

Full description

Autores:
Narváez-Cruz, A J
Useche Vivero, Jairo
Martínez-Trespalacios, J A
Castro-Suárez, J R
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9380
Acceso en línea:
https://hdl.handle.net/20.500.12585/9380
Palabra clave:
Boundary Element Method
Elastodynamics
Fundamental Solution
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UTB2_20724a4b62ad0a1ac893cf3dc5e68160
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9380
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
title A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
spellingShingle A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
Boundary Element Method
Elastodynamics
Fundamental Solution
title_short A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
title_full A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
title_fullStr A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
title_full_unstemmed A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
title_sort A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluids
dc.creator.fl_str_mv Narváez-Cruz, A J
Useche Vivero, Jairo
Martínez-Trespalacios, J A
Castro-Suárez, J R
dc.contributor.author.none.fl_str_mv Narváez-Cruz, A J
Useche Vivero, Jairo
Martínez-Trespalacios, J A
Castro-Suárez, J R
dc.subject.keywords.spa.fl_str_mv Boundary Element Method
Elastodynamics
Fundamental Solution
topic Boundary Element Method
Elastodynamics
Fundamental Solution
description A novel full Boundary Element Formulation for the harmonic analysis of elastic membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic fundamental solution is used in the boundary element formulation for the elastic membrane. The boundary element formulation for the acoustic fluid is based on the fundamental solution of three dimensional Poisson equation. Domain integrals related to inertial terms and those related with distributed pressure on membrane, were treated using the Dual Reciprocity Boundary Element Method. Fluid-structure coupling equations were established considering the continuity of the normal acceleration of the particles and dynamic pressure at fluid-structure interfaces. Results obtained shows the accuracy and efficiency of the proposed boundary element formulation.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-10T21:23:16Z
dc.date.available.none.fl_str_mv 2020-09-10T21:23:16Z
dc.date.issued.none.fl_str_mv 2020
dc.date.submitted.none.fl_str_mv 2020-09-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Otro
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Narváez-Cruz, A. J., Useche-Vivero, J. F., Martínez-Trespalacios, J. A., & Castro-Suarez, J. R. (2020). A novel full boundary element formulation for harmonic analysis of elastic membranes coupled to acoustics fluids. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 844(1) doi:10.1088/1757-899X/844/1/012061
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9380
dc.identifier.doi.none.fl_str_mv 10.1088/1757-899X/844/1/012061
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Narváez-Cruz, A. J., Useche-Vivero, J. F., Martínez-Trespalacios, J. A., & Castro-Suarez, J. R. (2020). A novel full boundary element formulation for harmonic analysis of elastic membranes coupled to acoustics fluids. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 844(1) doi:10.1088/1757-899X/844/1/012061
10.1088/1757-899X/844/1/012061
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9380
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IOP Conf. Series: Materials Science and Engineering 844 (2020) 012061
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/1/29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/6/29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/7/29.pdf.jpg
bitstream.checksum.fl_str_mv b271105f0b304f9fbc16d7ac58017203
24013099e9e6abb1575dc6ce0855efd5
e20ad307a1c5f3f25af9304a7a7c86b6
aad89fb85169db515e2c921df9d19f66
915b84985da32c0c3c7eda8471110f14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021801890545664
spelling Narváez-Cruz, A J9c163485-2430-4a3f-9f4d-df8894f0b113Useche Vivero, Jairo83cf25ab-cb4f-4d7b-b5c2-24487f5d7db4Martínez-Trespalacios, J Ab11737af-464e-4cca-8a38-116be7041d24Castro-Suárez, J Rb7e013aa-1bfe-43af-b28f-ded4697389c32020-09-10T21:23:16Z2020-09-10T21:23:16Z20202020-09-07Narváez-Cruz, A. J., Useche-Vivero, J. F., Martínez-Trespalacios, J. A., & Castro-Suarez, J. R. (2020). A novel full boundary element formulation for harmonic analysis of elastic membranes coupled to acoustics fluids. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 844(1) doi:10.1088/1757-899X/844/1/012061https://hdl.handle.net/20.500.12585/938010.1088/1757-899X/844/1/012061Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA novel full Boundary Element Formulation for the harmonic analysis of elastic membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic fundamental solution is used in the boundary element formulation for the elastic membrane. The boundary element formulation for the acoustic fluid is based on the fundamental solution of three dimensional Poisson equation. Domain integrals related to inertial terms and those related with distributed pressure on membrane, were treated using the Dual Reciprocity Boundary Element Method. Fluid-structure coupling equations were established considering the continuity of the normal acceleration of the particles and dynamic pressure at fluid-structure interfaces. Results obtained shows the accuracy and efficiency of the proposed boundary element formulation.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IOP Conf. Series: Materials Science and Engineering 844 (2020) 012061A Novel Full Boundary Element Formulation for Harmonic Analysis of Elastic Membranes Coupled to Acoustics Fluidsinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionOtrohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Boundary Element MethodElastodynamicsFundamental SolutionCartagena de IndiasInvestigadoresWrobel L C and Aliabadi M H 2002 The Boundary Element Method Volume 2: Applications in Solid and Structures (New York, NY: Wiley)Wrobel L C 2002 The Boundary Element Method Volume 1: Applications in Thermo-Fluids and Acoustics (New York, NY: Wiley)Mackerle J 1999 Finite Elements in Analysis and Design Journal 31 231–240Shekari M R, NKhaji and Ahmadi M T 2009 Journal of Fluids and Structures 25 567–585Naumenkob V, Strelnikovac E and Yeselevac E 2010 Engineering Analysis with Boundary Elements Journal 34 856–862Gaul L and Wenzel W 2002 Engineering Analysis with Boundary Elements 26 629–636Soares D 2009 International Journal for Numerical Methods in Engineering 78 1076–1093Everstine G C and Henderson F M 1990 The Journal of the Acoustical Society of America 87 1938–1947Fritze D, Marburg S and Hardtke H J 2005 Computers and Structures Journal 83 143–154Citarella R, Federico L and Cicatielloa A 2007 Engineering Analysis with Boundary Elements 31 248–258He Z, Liu G, Zhong Z, Zhang G and Cheng A 2011 Engineering Analysis with Boundary Elements 35 140–147Chen P T, Ju S H and Cha K C 2000 Journal of Sound and Vibration 233 407–422Marburg S and Nolte B 2010 Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods (New York, NY: Springer)Tanaka M and Masuda Y 1988 Computer Methods in Applied Mechanics and Engineering Journal 71 225–234Jr D S and Mansur W 2006 Journal of Computational Physics 219 498–512Burgschweiger R, Ochmann M and Nolte B 2008 The Journal of the Acoustical Society of America 123 3757–3760Jr D S, von Estorff O and Mansur W J 2005 International Journal for Numerical Methods in Engineering 64 1416–1431Kinsler L E, Freg A R, Coppens A B and Sanders J V 2005 Fundamental of Acoustics (London, UK: Jhon Wiley and Sons Inc.)Partridge P, Brebbia and Wrobel 1992 The Dual Reciprocity Boundary Element Method (Boston: Southampton)Morand P and Ohayon R 1995 Fluid Structure Interaction (New York, NY: John Wiley and Sons)http://purl.org/coar/resource_type/c_c94fORIGINAL29.pdf29.pdfPonenciaapplication/pdf675699https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/1/29.pdfb271105f0b304f9fbc16d7ac58017203MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT29.pdf.txt29.pdf.txtExtracted texttext/plain26402https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/6/29.pdf.txtaad89fb85169db515e2c921df9d19f66MD56THUMBNAIL29.pdf.jpg29.pdf.jpgGenerated Thumbnailimage/jpeg20900https://repositorio.utb.edu.co/bitstream/20.500.12585/9380/7/29.pdf.jpg915b84985da32c0c3c7eda8471110f14MD5720.500.12585/9380oai:repositorio.utb.edu.co:20.500.12585/93802023-04-24 09:16:23.093Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=