Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold

A contact structure on a three-dimensional manifold is a two-dimensional distribution on this manifold which satisfies the condition of complete non-integrability. If the distribution fails to satisfy this condition at points of some submanifold, we have a contact structure with singularities. The s...

Full description

Autores:
Arias, F.A
Malakhaltsev, M.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12265
Acceso en línea:
https://hdl.handle.net/20.500.12585/12265
Palabra clave:
$G$-structure with singularities
Contact structure
Sub-Riemannian structure
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_1ddcb23513927427e3dc006ab2799444
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12265
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
title Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
spellingShingle Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
$G$-structure with singularities
Contact structure
Sub-Riemannian structure
title_short Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
title_full Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
title_fullStr Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
title_full_unstemmed Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
title_sort Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold
dc.creator.fl_str_mv Arias, F.A
Malakhaltsev, M.
dc.contributor.author.none.fl_str_mv Arias, F.A
Malakhaltsev, M.
dc.subject.keywords.spa.fl_str_mv $G$-structure with singularities
Contact structure
Sub-Riemannian structure
topic $G$-structure with singularities
Contact structure
Sub-Riemannian structure
description A contact structure on a three-dimensional manifold is a two-dimensional distribution on this manifold which satisfies the condition of complete non-integrability. If the distribution fails to satisfy this condition at points of some submanifold, we have a contact structure with singularities. The singularities of contact structures were studied by J. Martinet, B. Jakubczyk and M. Zhitomirskii. We consider a contact structure with singularities as a G-structure with singularities, we find some topological and differential invariants of singularities of contact structure and establish their relation to the invariants found by B. Jakubczyk and M. Zhitomirskii. © 2020, Pleiades Publishing, Ltd.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:35:23Z
dc.date.available.none.fl_str_mv 2023-07-21T15:35:23Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Arias, F.A., Malakhaltsev, M. Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold. Lobachevskii J Math 41, 2415–2426 (2020). https://doi.org/10.1134/S1995080220120070
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12265
dc.identifier.doi.none.fl_str_mv 10.1134/S1995080220120070
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Arias, F.A., Malakhaltsev, M. Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold. Lobachevskii J Math 41, 2415–2426 (2020). https://doi.org/10.1134/S1995080220120070
10.1134/S1995080220120070
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12265
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv 12 páginas
Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Lobachevskii Journal of Mathematics - Vol. 41 No.2 (2020)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/1/Topological%20and%20Differential%20Invariants%20of%20Singularities%20of%20Contact%20Structure%20on%20a%20Three-Dimensional%20Manifold.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/4/Topological%20and%20Differential%20Invariants%20of%20Singularities%20of%20Contact%20Structure%20on%20a%20Three-Dimensional%20Manifold.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/5/Topological%20and%20Differential%20Invariants%20of%20Singularities%20of%20Contact%20Structure%20on%20a%20Three-Dimensional%20Manifold.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
7f0518ff7aa395f58d8c4f12d208e2a7
b97cabfeb098270cd8b03da2bc41c5e6
13a5030f325da0104748731976b2f4c0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021800188706816
spelling Arias, F.Ac440aee6-84a2-44dd-a512-506308c000a4Malakhaltsev, M.2750b343-25d1-4546-92ea-5122b8f40ea82023-07-21T15:35:23Z2023-07-21T15:35:23Z2020-122023-07Arias, F.A., Malakhaltsev, M. Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold. Lobachevskii J Math 41, 2415–2426 (2020). https://doi.org/10.1134/S1995080220120070https://hdl.handle.net/20.500.12585/1226510.1134/S1995080220120070Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA contact structure on a three-dimensional manifold is a two-dimensional distribution on this manifold which satisfies the condition of complete non-integrability. If the distribution fails to satisfy this condition at points of some submanifold, we have a contact structure with singularities. The singularities of contact structures were studied by J. Martinet, B. Jakubczyk and M. Zhitomirskii. We consider a contact structure with singularities as a G-structure with singularities, we find some topological and differential invariants of singularities of contact structure and establish their relation to the invariants found by B. Jakubczyk and M. Zhitomirskii. © 2020, Pleiades Publishing, Ltd.12 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Lobachevskii Journal of Mathematics - Vol. 41 No.2 (2020)Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifoldinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1$G$-structure with singularitiesContact structureSub-Riemannian structureCartagena de IndiasCampus TecnológicoMartinet, J. Sur les singularités des formes différentielles (1970) Ann. Inst. Fourier (Grenoble), 20, pp. 95-178. Cited 98 times.Jakubczyk, B., Zhitomirskii, M. Local reduction theorems and invariants for singular contact structures (2001) Annales de l'Institut Fourier, 51 (1), pp. 237-295. Cited 8 times. http://annalif.ujf-grenoble.fr/ doi: 10.5802/aif.1823Arteaga B., J.R., Malakhaltsev, M.A. Symmetries of sub-Riemannian surfaces (2011) Journal of Geometry and Physics, 61 (1), pp. 290-308. Cited 5 times. doi: 10.1016/j.geomphys.2010.09.024Arias Amaya, F.A., Malakhaltsev, M. Topological Invariants of Principal G-Bundles with Singularities (Open Access) (2018) Lobachevskii Journal of Mathematics, 39 (5), pp. 623-633. http://www.springer.com/math/journal/12202 doi: 10.1134/S1995080218050013Kobayashi, S., Nomizu, K. (1996) Foundations of Differential Geometry, Wiley Classics Library, 1. Cited 6637 times. (Wiley, New York,), VolMontgomery, R. A Tour of Subriemannian Geometries, Their Geodesics and Applications (2002) Of Mathematical Surveys and Monographs, 91. Cited 514 times. AMS, Providencehttp://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold.pdfTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold.pdfapplication/pdf97110https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/1/Topological%20and%20Differential%20Invariants%20of%20Singularities%20of%20Contact%20Structure%20on%20a%20Three-Dimensional%20Manifold.pdf7f0518ff7aa395f58d8c4f12d208e2a7MD51TEXTTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold.pdf.txtTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold.pdf.txtExtracted texttext/plain2163https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/4/Topological%20and%20Differential%20Invariants%20of%20Singularities%20of%20Contact%20Structure%20on%20a%20Three-Dimensional%20Manifold.pdf.txtb97cabfeb098270cd8b03da2bc41c5e6MD54THUMBNAILTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold.pdf.jpgTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold.pdf.jpgGenerated Thumbnailimage/jpeg7612https://repositorio.utb.edu.co/bitstream/20.500.12585/12265/5/Topological%20and%20Differential%20Invariants%20of%20Singularities%20of%20Contact%20Structure%20on%20a%20Three-Dimensional%20Manifold.pdf.jpg13a5030f325da0104748731976b2f4c0MD5520.500.12585/12265oai:repositorio.utb.edu.co:20.500.12585/122652023-07-22 00:17:37.433Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=