On some families of subsemigroups of a numerical semigroup

To a given numerical semigroup S we associate a family of subsemigroups {휕nS}, n ∈ ℕ, that permits us to understand some of the structure of S. We characterize this family in case S is a supersymmetric numerical semigroup or S has maximal embedding dimension. We also prove some properties related to...

Full description

Autores:
Arias Amaya, Fabián
Borja, Jerson
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10326
Acceso en línea:
https://hdl.handle.net/20.500.12585/10326
Palabra clave:
Numerical semigroup
Supersymmetric
Maximal embedding dimension
Minimal generating set
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_1bfe8e4b2e1931e8b7cfe21150a58d08
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10326
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv On some families of subsemigroups of a numerical semigroup
title On some families of subsemigroups of a numerical semigroup
spellingShingle On some families of subsemigroups of a numerical semigroup
Numerical semigroup
Supersymmetric
Maximal embedding dimension
Minimal generating set
LEMB
title_short On some families of subsemigroups of a numerical semigroup
title_full On some families of subsemigroups of a numerical semigroup
title_fullStr On some families of subsemigroups of a numerical semigroup
title_full_unstemmed On some families of subsemigroups of a numerical semigroup
title_sort On some families of subsemigroups of a numerical semigroup
dc.creator.fl_str_mv Arias Amaya, Fabián
Borja, Jerson
dc.contributor.author.none.fl_str_mv Arias Amaya, Fabián
Borja, Jerson
dc.subject.keywords.spa.fl_str_mv Numerical semigroup
Supersymmetric
Maximal embedding dimension
Minimal generating set
topic Numerical semigroup
Supersymmetric
Maximal embedding dimension
Minimal generating set
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description To a given numerical semigroup S we associate a family of subsemigroups {휕nS}, n ∈ ℕ, that permits us to understand some of the structure of S. We characterize this family in case S is a supersymmetric numerical semigroup or S has maximal embedding dimension. We also prove some properties related to embedding dimension and certain symmetry of the minimal generating set of the members of this family
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-04-07
dc.date.accessioned.none.fl_str_mv 2021-07-29T18:07:13Z
dc.date.available.none.fl_str_mv 2021-07-29T18:07:13Z
dc.date.submitted.none.fl_str_mv 2021-07-28
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Arias, F., Borja, J. On some families of subsemigroups of a numerical semigroup. Semigroup Forum 102, 322–339 (2021). https://doi.org/10.1007/s00233-020-10148-9
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10326
dc.identifier.doi.none.fl_str_mv 10.1007/s00233-020-10148-9
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Arias, F., Borja, J. On some families of subsemigroups of a numerical semigroup. Semigroup Forum 102, 322–339 (2021). https://doi.org/10.1007/s00233-020-10148-9
10.1007/s00233-020-10148-9
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10326
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.format.size.none.fl_str_mv 20 páginas
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Semigroup Forum 102, 322–339 (2021).
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/1/Semigroup_forum_article_Fabian%20Antonio%20Arias.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/4/Semigroup_forum_article_Fabian%20Antonio%20Arias.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/5/Semigroup_forum_article_Fabian%20Antonio%20Arias.pdf.jpg
bitstream.checksum.fl_str_mv 319ffb295fd5a22b8dfffe1e0fedc40e
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
82eaf8f94204c4d1a7b396049b3ca13d
8f4050f8cea7a9a055e44f3bac5f94db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021788160491520
spelling Arias Amaya, Fabián6eb2386c-1203-4d16-aeb7-43ce88eda09dBorja, Jerson6e810ab4-1ee6-4582-917f-958468bdb2fc600Colombia2021-07-29T18:07:13Z2021-07-29T18:07:13Z2020-04-072021-07-28Arias, F., Borja, J. On some families of subsemigroups of a numerical semigroup. Semigroup Forum 102, 322–339 (2021). https://doi.org/10.1007/s00233-020-10148-9https://hdl.handle.net/20.500.12585/1032610.1007/s00233-020-10148-9Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarTo a given numerical semigroup S we associate a family of subsemigroups {휕nS}, n ∈ ℕ, that permits us to understand some of the structure of S. We characterize this family in case S is a supersymmetric numerical semigroup or S has maximal embedding dimension. We also prove some properties related to embedding dimension and certain symmetry of the minimal generating set of the members of this familyapplication/pdf20 páginasenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Semigroup Forum 102, 322–339 (2021).On some families of subsemigroups of a numerical semigroupinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Numerical semigroupSupersymmetricMaximal embedding dimensionMinimal generating setLEMBCartagena de IndiasInvestigadoresAssi, A., García-Sánchez, P.A.: Numerical Semigroups and Applications. RSME Springer Series, vol. 3. Springer International Publishing, Cham (2016)Fröberg, R., Gottlieb, G., Häggkvist, R.: On numerical semigroups. Semigroup Forum 35, 63–83 (1987). https://doi.org/10.1007/BF02573091Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Developments in Mathematics, vol. 20. Springer, New York (2009)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALSemigroup_forum_article_Fabian Antonio Arias.pdfSemigroup_forum_article_Fabian Antonio Arias.pdfapplication/pdf1871893https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/1/Semigroup_forum_article_Fabian%20Antonio%20Arias.pdf319ffb295fd5a22b8dfffe1e0fedc40eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTSemigroup_forum_article_Fabian Antonio Arias.pdf.txtSemigroup_forum_article_Fabian Antonio Arias.pdf.txtExtracted texttext/plain41792https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/4/Semigroup_forum_article_Fabian%20Antonio%20Arias.pdf.txt82eaf8f94204c4d1a7b396049b3ca13dMD54THUMBNAILSemigroup_forum_article_Fabian Antonio Arias.pdf.jpgSemigroup_forum_article_Fabian Antonio Arias.pdf.jpgGenerated Thumbnailimage/jpeg27397https://repositorio.utb.edu.co/bitstream/20.500.12585/10326/5/Semigroup_forum_article_Fabian%20Antonio%20Arias.pdf.jpg8f4050f8cea7a9a055e44f3bac5f94dbMD5520.500.12585/10326oai:repositorio.utb.edu.co:20.500.12585/103262023-05-25 11:42:22.15Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=