Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
This paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master stage, a genetic algorithm is employed to select the power dispatch for any distributed gen...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8915
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8915
- Palabra clave:
- Direct current power grids
Distributed generation
Gauss-Seidel method
Genetic algorithm
Hybrid master-slave optimization strategy
Optimal power flow problem
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_1bcd91893b608b52239359de1b1d58bc |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8915 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem |
title |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem |
spellingShingle |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem Direct current power grids Distributed generation Gauss-Seidel method Genetic algorithm Hybrid master-slave optimization strategy Optimal power flow problem |
title_short |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem |
title_full |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem |
title_fullStr |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem |
title_full_unstemmed |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem |
title_sort |
Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem |
dc.subject.keywords.none.fl_str_mv |
Direct current power grids Distributed generation Gauss-Seidel method Genetic algorithm Hybrid master-slave optimization strategy Optimal power flow problem |
topic |
Direct current power grids Distributed generation Gauss-Seidel method Genetic algorithm Hybrid master-slave optimization strategy Optimal power flow problem |
description |
This paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master stage, a genetic algorithm is employed to select the power dispatch for any distributed generator while the slave stage, Gauss-Seidel method is used for solving the resulting power flow equations without recurring to matrix inversions. This approach is important since it can be easily implementable over any simple programming toolbox finding the optimal solution of the OPF problem. Genetic-Algorithm proposed in this paper corresponds to a continuous variant of the conventional binary approaches. Computational results show the efficiency and accuracy of the proposed optimization method when is compared to GAMS/CONOPT nonlinear solver. © 2018, World Scientific and Engineering Academy and Society. All rights reserved. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
WSEAS Transactions on Power Systems; Vol. 13, pp. 335-346 |
dc.identifier.issn.none.fl_str_mv |
17905060 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8915 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57191493648 55791991200 |
identifier_str_mv |
WSEAS Transactions on Power Systems; Vol. 13, pp. 335-346 17905060 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57191493648 55791991200 |
url |
https://hdl.handle.net/20.500.12585/8915 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific and Engineering Academy and Society |
publisher.none.fl_str_mv |
World Scientific and Engineering Academy and Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062268252&partnerID=40&md5=46edbfab70f6fb6b8d2d51e4c46870ae |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8915/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021724499345408 |
spelling |
2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018WSEAS Transactions on Power Systems; Vol. 13, pp. 335-34617905060https://hdl.handle.net/20.500.12585/8915Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364855791991200This paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master stage, a genetic algorithm is employed to select the power dispatch for any distributed generator while the slave stage, Gauss-Seidel method is used for solving the resulting power flow equations without recurring to matrix inversions. This approach is important since it can be easily implementable over any simple programming toolbox finding the optimal solution of the OPF problem. Genetic-Algorithm proposed in this paper corresponds to a continuous variant of the conventional binary approaches. Computational results show the efficiency and accuracy of the proposed optimization method when is compared to GAMS/CONOPT nonlinear solver. © 2018, World Scientific and Engineering Academy and Society. All rights reserved.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015.Recurso electrónicoapplication/pdfengWorld Scientific and Engineering Academy and Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062268252&partnerID=40&md5=46edbfab70f6fb6b8d2d51e4c46870aeOptimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF probleminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct current power gridsDistributed generationGauss-Seidel methodGenetic algorithmHybrid master-slave optimization strategyOptimal power flow problemMontoya O.D.Gil-González W.Grisales-Noreña L.F.Slough, T., Urpelainen, J., Yang, J., Light for all? Evaluating Brazils rural electrification progress 2000 2010 (2015) Energy Policy, 86, pp. 315-327. , http://www.sciencedirect.com/science/article/pii/S0301421515300124Thomas, D.R., Urpelainen, J., Early electrification and the quality of service: Evidence from rural india (2018) Energy for Sustainable Development, 44, pp. 11-20. , http://www.sciencedirect.com/science/article/pii/S0973082617308700Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900. , MayMontoya, O.D., Garcs, A., Espinosa-Prez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) Journal of Energy Storage, 16, pp. 259-268. , http://www.sciencedirect.com/science/article/pii/S2352152X17304644, [Online]. AvailableParhizi, S., Lotfi, H., Khodaei, A., Bahrami-Rad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Chapter 2-Uhv Ac Grid and System Stability, pp. 21-50. , http://www.sciencedirect.com/science/article/pii/B9780128051931000021, in UHV Transmission Technology. Oxford: Academic Press, 2018,, [On-line]Attia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel Sine-Cosine algorithm (2018) International Journal of Electrical Power & Energy Systems, 99, pp. 331-343. , http://www.sciencedirect.com/science/article/pii/S0142061517330272, [Online]Garces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Transactions on Power Systems, 31 (1), pp. 827-828. , JanAbdi, H., Beigvand, S.D., Scala, M.L., A review of optimal power flow studies applied to smart grids and micro-grids (2017) Renewable and Sustainable Energy Reviews, 71, pp. 742-766. , http://www.sciencedirect.com/science/article/pii/S1364032116311583Murty, P., Chapter 10-power flow studies (2017) Power Systems Analysis, pp. 205-276. , http://www.sciencedirect.com/science/article/pii/B9780081011119000100, (Second Edition), second edition ed., P. Murty, Ed. Boston: Butterworth-HeinemannMontoya-Giraldo, O.D., Gil-González, W.J., Garcés-Ruíz, A., Optimal power flow for radial and mesh grids using semidefinite program-ming (2017) Tecno Lógicas, 20 (40), pp. 29-42Gandini, D., de Almeida, A.T., Direct current microgrids based on solar power systems and storage optimization, as a tool for cost-effective rural electrification (2017) Renewable Energy, 111, pp. 275-283. , Supplement CGarces, A., On Convergence of Newtons Method in Power Flow Study for DC Micro-grids (2018) IEEE Transactions on Power Systems, p. 1Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. , Supplement CMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res, 163, pp. 375-381Beagam, K.S.H., Jayashree, R., Khan, M.A., A new dc power flow model for q flow analysis for use in reactive power market (2017) Engineering Science and Technology, an International Journal, 20 (2), pp. 721-729. , http://www.sciencedirect.com/science/article/pii/S2215098616306152Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal hvdc systems considering dc/dc converters (2016) 2016 IEEE 25Th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217. , JuneLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Opti-mal Power Flow in Stand-alone DC Microgrids (2018) IEEE Transactions on Power Systems, p. 1Boyd, S., Vandenberghe, L., (2004) Convex Optimization, , Cambridge university pressNesterov, Y., (2018) Lectures on Convex Optimization, Ser. Springer Optimization and Its Applications, , https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishing, [On-line]. AvailableBenedito, E., Del Puerto-Flores, D., Dria-Cerezo, A., Scherpen, J.M., Optimal Power Flow for resistive DC Networks: A Port-Hamiltonian approach (2017) Ifac-Papersonline, 50 (1), pp. 25-30. , http://www.sciencedirect.com/science/article/pii/S2405896317300162, 20th IFAC World Congress. [Online]Alexander, C., Sadiku, M., (2006) Fundamentals of Electric Circuits, , https://books.google.com.co/books?id=dm6VPwAACAAJ, McGraw-Hill Higher EducationBarabanov, N., Ortega, R., Gri, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), pp. 114-121Shuai, Z., Fang, J., Ning, F., Shen, Z.J., Hierarchical structure and bus voltage control of dc microgrid (2018) Renewable and Sustainable Energy Reviews, 82, pp. 3670-3682. , http://www.sciencedirect.com/science/article/pii/S1364032117314788Depersis, C., Weitenberg, E.R., Drfler, F., A power consensus algorithm for dc microgrids (2018) Automatica, 89, pp. 364-375. , http://www.sciencedirect.com/science/article/pii/S0005109817306131, OnlineAvailableLiu, Z., Su, M., Sun, Y., Han, H., Hou, X., Guerrero, J.M., Stability analysis of dc microgrids with constant power load under distributed control methods (2018) Automatica, 90, pp. 62-72. , http://www.sciencedirect.com/science/article/pii/S0005109817306386, [On-line]. AvailableShivam, Dahiya, R., Stability analysis of islanded DC microgrid for the proposed distributed control strategy with constant power loads (2018) Computers & Electrical Engineering, , http://www.sciencedirect.com/science/article/pii/S0045790617309606Khorasani, P.G., Joorabian, M., Seifossadat, S.G., Smart grid realization with introducing unified power quality conditioner integrated with dc microgrid (2017) Electric Power Systems Research, 151, pp. 68-85. , http://www.sciencedirect.com/science/article/pii/S0378779617302122, [Online]Wu, H., Liu, X., Ding, M., Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm (2014) International Journal of Electrical Power & Energy Systems, 63, pp. 336-346. , http://www.sciencedirect.com/science/article/pii/S0142061514003482, [On-line]. AvailablePhurailatpam, C., Rajpurohit, B.S., Wang, L., Planning and optimization of autonomous DC microgrids for rural and urban applications in India (2018) Renewable and Sustainable Energy Reviews, 82, pp. 194-204. , http://www.sciencedirect.com/science/article/pii/S1364032117312509, [Online]. AvailableHamad, A.A., El-Saadany, E.F., Multi-agent supervisory control for optimal economic dispatch in DC microgrids (2016) Sustainable Cities and Society, 27, pp. 129-136. , http://www.sciencedirect.com/science/article/pii/S2210670716300294, [Online]. AvailableBhattacharjee, V., Khan, I., A non-linear convex cost model for economic dispatch in microgrids (2018) Applied Energy, 222, pp. 637-648. , http://www.sciencedirect.com/science/article/pii/S0306261918305439, [Online]Montoya, O.D., Grajales, A., Grisales, L.F., Castro, C.A., Optimal Location and Operation of Energy Storage Devices in Microgrids in Presence of Distributed Generation (In Span-ish) Revista CINTEX, 22 (1), pp. 97-117. , jun 2017Yue, J., Hu, Z., Li, C., Vasquez, J.C., Guerrero, J.M., Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System (2017) Energies, 10 (7). , http://www.mdpi.com/1996-1073/10/7/916, [Online]. AvailableBhoskar, M.T., Kulkarni, M.O.K., Kulkarni, M.N.K., Patekar, M.S.L., Kakandikar, G., Nandedkar, V., Genetic algorithm and its applications to mechanical engineering: A review Materials Today: Proceedings, Vol. 2, No. 4, Pp. 2624 – 2630, 2015, 4Th International Conference on Materials Processing and Characterzation, , http://www.sciencedirect.com/science/article/pii/S2214785315004642, [Online]. AvailableMontoya, O.D., Numerical approximation of the maximum power consumption in dc-mgs with cpls via an sdp model (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, p. 1Machado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear ac networks with constant-power loads (2017) IEEE Transactions on Circuits and Systems I: Regular Papers, 64 (10), pp. 2772-2782. , OctGallego, R.A., Monticelli, A., Romero, R., Transmission system expansion planning by an extended genetic algorithm (1998) IEE Proceedings-Generation, Transmission and Distribution, 145 (3), pp. 329-335. , MaySheng, W., Liu, K.Y., Liu, Y., Meng, X., Li, Y., Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm ii (2015) IEEE Transactions on Power Delivery, 30 (2), pp. 569-578. , AprilEsmaelian, M., Tavana, M., Santos-Arteaga, F.J., Vali, M., A novel genetic algorithm based method for solving continuous nonlinear optimization problems through subdividing and labeling (2018) Measurement, 115, pp. 27-38. , http://www.sciencedirect.com/science/article/pii/S0263224117306061, [Online]Arqub, O.A., Abo-Hammour, Z., Nu-merical solution of systems of second-order boundary value problems using continuous genetic algorithm (2014) Information Sciences, 279, pp. 396-415. , http://www.sciencedirect.com/science/article/pii/S0020025514004253, [Online]. AvailableTodorovski, M., Rajicic, D., An initialization procedure in solving optimal power flow by genetic algorithm (2006) IEEE Transactions on Power Systems, 21 (2), pp. 480-487. , MayTodescato, M., DC power flow feasibility: Positive vs. negative loads (2017) 2017 IEEE 56Th Annual Conference on Decision and Control (CDC), pp. 3258-3263. , Dechttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8915/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8915oai:repositorio.utb.edu.co:20.500.12585/89152021-02-02 14:46:02.329Repositorio Institucional UTBrepositorioutb@utb.edu.co |