Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem

This paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master stage, a genetic algorithm is employed to select the power dispatch for any distributed gen...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8915
Acceso en línea:
https://hdl.handle.net/20.500.12585/8915
Palabra clave:
Direct current power grids
Distributed generation
Gauss-Seidel method
Genetic algorithm
Hybrid master-slave optimization strategy
Optimal power flow problem
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_1bcd91893b608b52239359de1b1d58bc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8915
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
title Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
spellingShingle Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
Direct current power grids
Distributed generation
Gauss-Seidel method
Genetic algorithm
Hybrid master-slave optimization strategy
Optimal power flow problem
title_short Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
title_full Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
title_fullStr Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
title_full_unstemmed Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
title_sort Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem
dc.subject.keywords.none.fl_str_mv Direct current power grids
Distributed generation
Gauss-Seidel method
Genetic algorithm
Hybrid master-slave optimization strategy
Optimal power flow problem
topic Direct current power grids
Distributed generation
Gauss-Seidel method
Genetic algorithm
Hybrid master-slave optimization strategy
Optimal power flow problem
description This paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master stage, a genetic algorithm is employed to select the power dispatch for any distributed generator while the slave stage, Gauss-Seidel method is used for solving the resulting power flow equations without recurring to matrix inversions. This approach is important since it can be easily implementable over any simple programming toolbox finding the optimal solution of the OPF problem. Genetic-Algorithm proposed in this paper corresponds to a continuous variant of the conventional binary approaches. Computational results show the efficiency and accuracy of the proposed optimization method when is compared to GAMS/CONOPT nonlinear solver. © 2018, World Scientific and Engineering Academy and Society. All rights reserved.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:36Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:36Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv WSEAS Transactions on Power Systems; Vol. 13, pp. 335-346
dc.identifier.issn.none.fl_str_mv 17905060
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8915
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
55791991200
identifier_str_mv WSEAS Transactions on Power Systems; Vol. 13, pp. 335-346
17905060
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
55791991200
url https://hdl.handle.net/20.500.12585/8915
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Scientific and Engineering Academy and Society
publisher.none.fl_str_mv World Scientific and Engineering Academy and Society
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062268252&partnerID=40&md5=46edbfab70f6fb6b8d2d51e4c46870ae
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8915/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021724499345408
spelling 2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018WSEAS Transactions on Power Systems; Vol. 13, pp. 335-34617905060https://hdl.handle.net/20.500.12585/8915Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364855791991200This paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master stage, a genetic algorithm is employed to select the power dispatch for any distributed generator while the slave stage, Gauss-Seidel method is used for solving the resulting power flow equations without recurring to matrix inversions. This approach is important since it can be easily implementable over any simple programming toolbox finding the optimal solution of the OPF problem. Genetic-Algorithm proposed in this paper corresponds to a continuous variant of the conventional binary approaches. Computational results show the efficiency and accuracy of the proposed optimization method when is compared to GAMS/CONOPT nonlinear solver. © 2018, World Scientific and Engineering Academy and Society. All rights reserved.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015.Recurso electrónicoapplication/pdfengWorld Scientific and Engineering Academy and Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062268252&partnerID=40&md5=46edbfab70f6fb6b8d2d51e4c46870aeOptimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF probleminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct current power gridsDistributed generationGauss-Seidel methodGenetic algorithmHybrid master-slave optimization strategyOptimal power flow problemMontoya O.D.Gil-González W.Grisales-Noreña L.F.Slough, T., Urpelainen, J., Yang, J., Light for all? Evaluating Brazils rural electrification progress 2000 2010 (2015) Energy Policy, 86, pp. 315-327. , http://www.sciencedirect.com/science/article/pii/S0301421515300124Thomas, D.R., Urpelainen, J., Early electrification and the quality of service: Evidence from rural india (2018) Energy for Sustainable Development, 44, pp. 11-20. , http://www.sciencedirect.com/science/article/pii/S0973082617308700Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900. , MayMontoya, O.D., Garcs, A., Espinosa-Prez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) Journal of Energy Storage, 16, pp. 259-268. , http://www.sciencedirect.com/science/article/pii/S2352152X17304644, [Online]. AvailableParhizi, S., Lotfi, H., Khodaei, A., Bahrami-Rad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Chapter 2-Uhv Ac Grid and System Stability, pp. 21-50. , http://www.sciencedirect.com/science/article/pii/B9780128051931000021, in UHV Transmission Technology. Oxford: Academic Press, 2018,, [On-line]Attia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel Sine-Cosine algorithm (2018) International Journal of Electrical Power & Energy Systems, 99, pp. 331-343. , http://www.sciencedirect.com/science/article/pii/S0142061517330272, [Online]Garces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Transactions on Power Systems, 31 (1), pp. 827-828. , JanAbdi, H., Beigvand, S.D., Scala, M.L., A review of optimal power flow studies applied to smart grids and micro-grids (2017) Renewable and Sustainable Energy Reviews, 71, pp. 742-766. , http://www.sciencedirect.com/science/article/pii/S1364032116311583Murty, P., Chapter 10-power flow studies (2017) Power Systems Analysis, pp. 205-276. , http://www.sciencedirect.com/science/article/pii/B9780081011119000100, (Second Edition), second edition ed., P. Murty, Ed. Boston: Butterworth-HeinemannMontoya-Giraldo, O.D., Gil-González, W.J., Garcés-Ruíz, A., Optimal power flow for radial and mesh grids using semidefinite program-ming (2017) Tecno Lógicas, 20 (40), pp. 29-42Gandini, D., de Almeida, A.T., Direct current microgrids based on solar power systems and storage optimization, as a tool for cost-effective rural electrification (2017) Renewable Energy, 111, pp. 275-283. , Supplement CGarces, A., On Convergence of Newtons Method in Power Flow Study for DC Micro-grids (2018) IEEE Transactions on Power Systems, p. 1Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. , Supplement CMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res, 163, pp. 375-381Beagam, K.S.H., Jayashree, R., Khan, M.A., A new dc power flow model for q flow analysis for use in reactive power market (2017) Engineering Science and Technology, an International Journal, 20 (2), pp. 721-729. , http://www.sciencedirect.com/science/article/pii/S2215098616306152Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal hvdc systems considering dc/dc converters (2016) 2016 IEEE 25Th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217. , JuneLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Opti-mal Power Flow in Stand-alone DC Microgrids (2018) IEEE Transactions on Power Systems, p. 1Boyd, S., Vandenberghe, L., (2004) Convex Optimization, , Cambridge university pressNesterov, Y., (2018) Lectures on Convex Optimization, Ser. Springer Optimization and Its Applications, , https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishing, [On-line]. AvailableBenedito, E., Del Puerto-Flores, D., Dria-Cerezo, A., Scherpen, J.M., Optimal Power Flow for resistive DC Networks: A Port-Hamiltonian approach (2017) Ifac-Papersonline, 50 (1), pp. 25-30. , http://www.sciencedirect.com/science/article/pii/S2405896317300162, 20th IFAC World Congress. [Online]Alexander, C., Sadiku, M., (2006) Fundamentals of Electric Circuits, , https://books.google.com.co/books?id=dm6VPwAACAAJ, McGraw-Hill Higher EducationBarabanov, N., Ortega, R., Gri, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), pp. 114-121Shuai, Z., Fang, J., Ning, F., Shen, Z.J., Hierarchical structure and bus voltage control of dc microgrid (2018) Renewable and Sustainable Energy Reviews, 82, pp. 3670-3682. , http://www.sciencedirect.com/science/article/pii/S1364032117314788Depersis, C., Weitenberg, E.R., Drfler, F., A power consensus algorithm for dc microgrids (2018) Automatica, 89, pp. 364-375. , http://www.sciencedirect.com/science/article/pii/S0005109817306131, OnlineAvailableLiu, Z., Su, M., Sun, Y., Han, H., Hou, X., Guerrero, J.M., Stability analysis of dc microgrids with constant power load under distributed control methods (2018) Automatica, 90, pp. 62-72. , http://www.sciencedirect.com/science/article/pii/S0005109817306386, [On-line]. AvailableShivam, Dahiya, R., Stability analysis of islanded DC microgrid for the proposed distributed control strategy with constant power loads (2018) Computers & Electrical Engineering, , http://www.sciencedirect.com/science/article/pii/S0045790617309606Khorasani, P.G., Joorabian, M., Seifossadat, S.G., Smart grid realization with introducing unified power quality conditioner integrated with dc microgrid (2017) Electric Power Systems Research, 151, pp. 68-85. , http://www.sciencedirect.com/science/article/pii/S0378779617302122, [Online]Wu, H., Liu, X., Ding, M., Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm (2014) International Journal of Electrical Power & Energy Systems, 63, pp. 336-346. , http://www.sciencedirect.com/science/article/pii/S0142061514003482, [On-line]. AvailablePhurailatpam, C., Rajpurohit, B.S., Wang, L., Planning and optimization of autonomous DC microgrids for rural and urban applications in India (2018) Renewable and Sustainable Energy Reviews, 82, pp. 194-204. , http://www.sciencedirect.com/science/article/pii/S1364032117312509, [Online]. AvailableHamad, A.A., El-Saadany, E.F., Multi-agent supervisory control for optimal economic dispatch in DC microgrids (2016) Sustainable Cities and Society, 27, pp. 129-136. , http://www.sciencedirect.com/science/article/pii/S2210670716300294, [Online]. AvailableBhattacharjee, V., Khan, I., A non-linear convex cost model for economic dispatch in microgrids (2018) Applied Energy, 222, pp. 637-648. , http://www.sciencedirect.com/science/article/pii/S0306261918305439, [Online]Montoya, O.D., Grajales, A., Grisales, L.F., Castro, C.A., Optimal Location and Operation of Energy Storage Devices in Microgrids in Presence of Distributed Generation (In Span-ish) Revista CINTEX, 22 (1), pp. 97-117. , jun 2017Yue, J., Hu, Z., Li, C., Vasquez, J.C., Guerrero, J.M., Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System (2017) Energies, 10 (7). , http://www.mdpi.com/1996-1073/10/7/916, [Online]. AvailableBhoskar, M.T., Kulkarni, M.O.K., Kulkarni, M.N.K., Patekar, M.S.L., Kakandikar, G., Nandedkar, V., Genetic algorithm and its applications to mechanical engineering: A review Materials Today: Proceedings, Vol. 2, No. 4, Pp. 2624 – 2630, 2015, 4Th International Conference on Materials Processing and Characterzation, , http://www.sciencedirect.com/science/article/pii/S2214785315004642, [Online]. AvailableMontoya, O.D., Numerical approximation of the maximum power consumption in dc-mgs with cpls via an sdp model (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, p. 1Machado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear ac networks with constant-power loads (2017) IEEE Transactions on Circuits and Systems I: Regular Papers, 64 (10), pp. 2772-2782. , OctGallego, R.A., Monticelli, A., Romero, R., Transmission system expansion planning by an extended genetic algorithm (1998) IEE Proceedings-Generation, Transmission and Distribution, 145 (3), pp. 329-335. , MaySheng, W., Liu, K.Y., Liu, Y., Meng, X., Li, Y., Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm ii (2015) IEEE Transactions on Power Delivery, 30 (2), pp. 569-578. , AprilEsmaelian, M., Tavana, M., Santos-Arteaga, F.J., Vali, M., A novel genetic algorithm based method for solving continuous nonlinear optimization problems through subdividing and labeling (2018) Measurement, 115, pp. 27-38. , http://www.sciencedirect.com/science/article/pii/S0263224117306061, [Online]Arqub, O.A., Abo-Hammour, Z., Nu-merical solution of systems of second-order boundary value problems using continuous genetic algorithm (2014) Information Sciences, 279, pp. 396-415. , http://www.sciencedirect.com/science/article/pii/S0020025514004253, [Online]. AvailableTodorovski, M., Rajicic, D., An initialization procedure in solving optimal power flow by genetic algorithm (2006) IEEE Transactions on Power Systems, 21 (2), pp. 480-487. , MayTodescato, M., DC power flow feasibility: Positive vs. negative loads (2017) 2017 IEEE 56Th Annual Conference on Decision and Control (CDC), pp. 3258-3263. , Dechttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8915/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8915oai:repositorio.utb.edu.co:20.500.12585/89152021-02-02 14:46:02.329Repositorio Institucional UTBrepositorioutb@utb.edu.co