Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)

The translational and orientational potential energy surfaces (PESs) of n-alkanethiols with up to four carbon atoms are studied for (√(3) × √(3))R30° self-assembled monolayers (SAMs). The PESs indicate that methanethiol may form SAM structures that are not accessible for long-chain thiols. The tilt...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9113
Acceso en línea:
https://hdl.handle.net/20.500.12585/9113
Palabra clave:
Alkanethiols
Density functional calculations
Gold
Monolayers
Structure elucidation
Atoms
Carbon
Chain length
Complexation
Crystal symmetry
Density functional theory
Dimers
Gold
Gold compounds
Molecular physics
Monolayers
Paraffins
Point defects
Potential energy
Potential energy surfaces
Quantum chemistry
Self assembled monolayers
Single crystals
Sulfur
Van der Waals forces
Alkanethiol self-assembled monolayers
Alkanethiols
Chain-chain interactions
Gradient approximation
Interaction energies
Structure elucidation
Thermal equilibriums
Van Der Waals interactions
Binding energy
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_1afa8f0ba61d71b22d192acd6ee757e8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9113
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
title Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
spellingShingle Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
Alkanethiols
Density functional calculations
Gold
Monolayers
Structure elucidation
Atoms
Carbon
Chain length
Complexation
Crystal symmetry
Density functional theory
Dimers
Gold
Gold compounds
Molecular physics
Monolayers
Paraffins
Point defects
Potential energy
Potential energy surfaces
Quantum chemistry
Self assembled monolayers
Single crystals
Sulfur
Van der Waals forces
Alkanethiol self-assembled monolayers
Alkanethiols
Chain-chain interactions
Gradient approximation
Interaction energies
Structure elucidation
Thermal equilibriums
Van Der Waals interactions
Binding energy
title_short Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
title_full Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
title_fullStr Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
title_full_unstemmed Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
title_sort Steric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)
dc.subject.keywords.none.fl_str_mv Alkanethiols
Density functional calculations
Gold
Monolayers
Structure elucidation
Atoms
Carbon
Chain length
Complexation
Crystal symmetry
Density functional theory
Dimers
Gold
Gold compounds
Molecular physics
Monolayers
Paraffins
Point defects
Potential energy
Potential energy surfaces
Quantum chemistry
Self assembled monolayers
Single crystals
Sulfur
Van der Waals forces
Alkanethiol self-assembled monolayers
Alkanethiols
Chain-chain interactions
Gradient approximation
Interaction energies
Structure elucidation
Thermal equilibriums
Van Der Waals interactions
Binding energy
topic Alkanethiols
Density functional calculations
Gold
Monolayers
Structure elucidation
Atoms
Carbon
Chain length
Complexation
Crystal symmetry
Density functional theory
Dimers
Gold
Gold compounds
Molecular physics
Monolayers
Paraffins
Point defects
Potential energy
Potential energy surfaces
Quantum chemistry
Self assembled monolayers
Single crystals
Sulfur
Van der Waals forces
Alkanethiol self-assembled monolayers
Alkanethiols
Chain-chain interactions
Gradient approximation
Interaction energies
Structure elucidation
Thermal equilibriums
Van Der Waals interactions
Binding energy
description The translational and orientational potential energy surfaces (PESs) of n-alkanethiols with up to four carbon atoms are studied for (√(3) × √(3))R30° self-assembled monolayers (SAMs). The PESs indicate that methanethiol may form SAM structures that are not accessible for long-chain thiols. The tilt of the thiol molecules is determined by a compromise between the preferred binding geometry at the sulfur atom and the steric requirements of the alkane chains. The Au-S bond lengths, offset from the bridge position (brg), and the Au-S-C bond angles result in tilt angles of the S-C bond in the range of 55-60°. As DFT/generalized gradient approximation systematically underestimates chain-chain interactions, the binding energies are corrected by comparison to MP2 interaction energies of alkane dimers in SAM-like configurations. The resulting thiol binding energies increase by approximately 1 kcal mol-1 per CH2 group, which results in a substantial stabilization of long-chain SAMs due to chain-chain interactions. Furthermore, as the chain length increases, the accessible range of backbone tilt angles is constrained due to steric effects. The combination of these two effects may explain why SAM structures with long-chain thiols exhibit higher order in experiments. For each thiol two favorable SAM structures are found with the sulfur head group at the fcc-brg and hcp-brg positions, respectively. These domains may coexist in thermal equilibrium. In combination with the symmetry of the gold (111) surface, this raises the possibility of up to six different domains on single-crystal terraces. Reconstructions by an adatom or vacancy of ethanethiol SAMs with (√(3) × √(3))R30° lattice are also studied using PES scans. The results indicate that adsorption of thiols next to a vacancy is favorable and may lead to point defects inside SAMs. Showing potential: The translational and orientational potential energy surfaces of n-alkanethiols with up to four carbon atoms are studied for (√(3) × √(3))R30° self-assembled monolayers (SAMs, see picture). The binding energies with the van der Waals interactions corrected using MP2 calculations increase by about 1 kcal mol-1 per CH2 group. This trend and the increasingly confined accessible range of the tilt angles may contribute to the higher order observed in long-chain thiol SAMs on gold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:58Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:58Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv ChemPhysChem; Vol. 12, Núm. 5; pp. 999-1009
dc.identifier.issn.none.fl_str_mv 14394235
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9113
dc.identifier.doi.none.fl_str_mv 10.1002/cphc.201000803
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 35094573000
7003439449
6701809115
identifier_str_mv ChemPhysChem; Vol. 12, Núm. 5; pp. 999-1009
14394235
10.1002/cphc.201000803
Universidad Tecnológica de Bolívar
Repositorio UTB
35094573000
7003439449
6701809115
url https://hdl.handle.net/20.500.12585/9113
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953228905&doi=10.1002%2fcphc.201000803&partnerID=40&md5=1b39cf4c9196a19ed12b891ecce150cb
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9113/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021614621163520
spelling 2020-03-26T16:32:58Z2020-03-26T16:32:58Z2011ChemPhysChem; Vol. 12, Núm. 5; pp. 999-100914394235https://hdl.handle.net/20.500.12585/911310.1002/cphc.201000803Universidad Tecnológica de BolívarRepositorio UTB3509457300070034394496701809115The translational and orientational potential energy surfaces (PESs) of n-alkanethiols with up to four carbon atoms are studied for (√(3) × √(3))R30° self-assembled monolayers (SAMs). The PESs indicate that methanethiol may form SAM structures that are not accessible for long-chain thiols. The tilt of the thiol molecules is determined by a compromise between the preferred binding geometry at the sulfur atom and the steric requirements of the alkane chains. The Au-S bond lengths, offset from the bridge position (brg), and the Au-S-C bond angles result in tilt angles of the S-C bond in the range of 55-60°. As DFT/generalized gradient approximation systematically underestimates chain-chain interactions, the binding energies are corrected by comparison to MP2 interaction energies of alkane dimers in SAM-like configurations. The resulting thiol binding energies increase by approximately 1 kcal mol-1 per CH2 group, which results in a substantial stabilization of long-chain SAMs due to chain-chain interactions. Furthermore, as the chain length increases, the accessible range of backbone tilt angles is constrained due to steric effects. The combination of these two effects may explain why SAM structures with long-chain thiols exhibit higher order in experiments. For each thiol two favorable SAM structures are found with the sulfur head group at the fcc-brg and hcp-brg positions, respectively. These domains may coexist in thermal equilibrium. In combination with the symmetry of the gold (111) surface, this raises the possibility of up to six different domains on single-crystal terraces. Reconstructions by an adatom or vacancy of ethanethiol SAMs with (√(3) × √(3))R30° lattice are also studied using PES scans. The results indicate that adsorption of thiols next to a vacancy is favorable and may lead to point defects inside SAMs. Showing potential: The translational and orientational potential energy surfaces of n-alkanethiols with up to four carbon atoms are studied for (√(3) × √(3))R30° self-assembled monolayers (SAMs, see picture). The binding energies with the van der Waals interactions corrected using MP2 calculations increase by about 1 kcal mol-1 per CH2 group. This trend and the increasingly confined accessible range of the tilt angles may contribute to the higher order observed in long-chain thiol SAMs on gold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Recurso electrónicoapplication/pdfengWiley-VCH Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-79953228905&doi=10.1002%2fcphc.201000803&partnerID=40&md5=1b39cf4c9196a19ed12b891ecce150cbSteric and chain length effects in the (√(3) × √(3))R30° structures of alkanethiol self-assembled monolayers on Au(111)info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1AlkanethiolsDensity functional calculationsGoldMonolayersStructure elucidationAtomsCarbonChain lengthComplexationCrystal symmetryDensity functional theoryDimersGoldGold compoundsMolecular physicsMonolayersParaffinsPoint defectsPotential energyPotential energy surfacesQuantum chemistrySelf assembled monolayersSingle crystalsSulfurVan der Waals forcesAlkanethiol self-assembled monolayersAlkanethiolsChain-chain interactionsGradient approximationInteraction energiesStructure elucidationThermal equilibriumsVan Der Waals interactionsBinding energyTorres E.Blumenau A.T.Biedermann P.U.Akinaga, Y., Nakajima, T., Hirao, K., (2001) J. Chem. Phys., 114, pp. 8555-8564Akkerman, H.B., Blom, P.W.M., De Leeuw, D.M., De Boer, B., (2006) Nature, 441, pp. 69-72Akkerman, H.B., Kronemeijer, A.J., Van Hal, P.A., De Leeuw, D.M., Blom, P.W.M., De Boer, B., (2008) Small, 4, pp. 100-104Allara, D.L., (1995) Biosens. Bioelectron., 10, pp. 771-783Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., Nuzzo, R.G., (1989) J. Am. Chem. Soc., 111, pp. 321-335Baralia, G.G., Pallandre, A., Nysten, B., Jonas, A.M., (2006) Nanotechnology, 17, pp. 1160-1165Beardmore, K.M., Kress, J.D., Gronbech-Jensen, N., Bishop, A.R., (1998) Chem. Phys. Lett., 286, pp. 40-45Blöchl, P.E., (1994) Phys. Rev. B, 50, pp. 17953-17979Canchaya, J.G.S., Wang, Y., Alcami, M., Martin, F., Busnengo, H.F., (2010) Phys. Chem. Chem. Phys., 12, pp. 7555-7565Cao, Y., Ge, Q., Dyer, D., Wang, L., (2003) J. Phys. Chem. B, 107, pp. 3803-3807Cometto, F.P., Paredes-Olivera, P., MacAgno, V.A., Patrito, E.M., (2005) J. Phys. Chem. B, 109, pp. 21737-21748Cossaro, A., Mazzarello, R., Rousseau, R., Casalis, L., Verdini, A., Kohlmeyer, A., Floreano, L., Scoles, G., (2008) Science, 321, pp. 943-946Dishner, M.H., Hemminger, J.C., Feher, F.J., (1997) Langmuir, 13, pp. 2318-2322Dubois, L.H., Zegarski, B.R., Nuzzo, R.G., (1993) J. Chem. Phys., 98, pp. 678-688Esplandiu, M.J., Carot, M.L., Cometto, F.P., MacAgno, V.A., Patrito, E.M., (2006) Surf. Sci., 600, pp. 155-172Fenter, P., Eberhardt, A., Eisenberger, P., (1994) Science, 266, pp. 1216-1218Fenter, P., Eisenberger, P., Liang, K.S., (1993) Phys. Rev. Lett., 70, pp. 2447-2450Fischer, D., Curioni, A., Andreoni, W., (2003) Langmuir, 19, pp. 3567-3571Flood, A.H., Stoddart, J.F., Steuerman, D.W., Heath, J.R., (2004) Science, 306, pp. 2055-2056Franzen, S., (2003) Chem. Phys. Lett., 381, pp. 315-321Gottschalck, J., Hammer, B., (2002) J. Chem. Phys., 116, pp. 784-790Grönbeck, H., Curioni, A., Andreoni, W., (2000) J. Am. Chem. Soc., 122, pp. 3839-3842Grönbeck, H., Häkkinen, H., Whetten, R.L., (2008) J. Phys. Chem. C, 112, pp. 15940-15942Hayashi, T., Morikawa, Y., Nozoye, H., (2001) J. Chem. Phys., 114, pp. 7615-7621Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, p. 864. , BB 871Kautz, N.A., Kandel, S.A., (2009) J. Phys. Chem. C, 113, pp. 19286-19291Kohn, W., Sham, L.J., (1965) Phys. Rev., 140, p. 1133. , AA 1138Kondoh, H., Iwasaki, M., Shimada, T., Amemiya, K., Yokoyama, T., Ohta, T., Shimomura, M., Kono, S., (2003) Phys. Rev. Lett., 90, p. 066102Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54, pp. 11169-11186Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, pp. 1758-1775Li, A.H.-T., Chao, S.D., (2006) J. Chem. Phys., 125, p. 094312Lio, A., Charych, D.H., Salmeron, M., (1997) J. Phys. Chem. B, 101, pp. 3800-3805Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., (2005) Chem. Rev., 105, pp. 1103-1170Lüssem, B., Müller-Meskamp, L., Karthäuser, S., Waser, R., (2005) Langmuir, 21, pp. 5256-5258Maksymovych, P., Sorescu, D.C., Yates, J.T., (2006) J. Phys. Chem. B, 110, pp. 21161-21167Maksymovych, P., Sorescu, D.C., Yates Jr., J.T., (2006) Phys. Rev. Lett., 97, p. 146103Mazzarello, R., Cossaro, A., Verdini, A., Rousseau, R., Casalis, L., Danisman, M.F., Floreano, L., Scoles, G., (2007) Phys. Rev. Lett., 98, p. 016102Molina, L.M., Hammer, B., (2002) Chem. Phys. Lett., 360, pp. 264-271Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B, 13, pp. 5188-5192Nishi, N., Hobara, D., Yamamoto, M., Kakiuchi, T., (2003) J. Chem. Phys., 118, pp. 1904-1911Nuzzo, R.G., Dubois, L.H., Allara, D.L., (1990) J. Am. Chem. Soc., 112, pp. 558-569Nuzzo, R.G., Korenic, E.M., Dubois, L.H., (1990) J. Chem. Phys., 93, pp. 767-773Nuzzo, R.G., Zegarski, B.R., Dubois, L.H., (1987) J. Am. Chem. Soc., 109, pp. 733-740Paradis, E., Rowntree, P., (2003) J. Electroanal. Chem., 550-551, pp. 175-185Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, pp. 13244-13249Peterlinz, K.A., Georgiadis, R., (1996) Langmuir, 12, pp. 4731-4740Poirier, G., (1997) Langmuir, 13, pp. 2019-2026Poirier, G.E., Pylant, E.D., (1996) Science, 272, pp. 1145-1148Porter, M.D., Bright, T.B., Allara, D.L., Chidsey, C.E.D., (1987) J. Am. Chem. Soc., 109, pp. 3559-3568Pyykkö, P., (2008) Chem. Soc. Rev., 37, pp. 1967-1997Roper, M.G., Skegg, M.P., Fisher, C.J., Lee, J.J., Dhanak, V.R., Woodruff, D.P., Jones, R.G., (2004) Chem. Phys. Lett., 389, pp. 87-91Schreiber, F., (2000) Prog. Surf. Sci., 65, pp. 151-257Schwartz, D.K., (2001) Annu. Rev. Phys. Chem., 52, pp. 107-137Sellers, H., Ulman, A., Shnidman, Y., Eilers, J.E., (1993) J. Am. Chem. Soc., 115, pp. 9389-9401Stranick, S.J., Parikh, A.N., Allara, D.L., Weiss, P.S., (1994) J. Phys. Chem., 98, pp. 11136-11142Strong, L., Whitesides, G.M., (1988) Langmuir, 4, pp. 546-558Terán Arce, F., Vela, M.E., Salvarezza, R.C., Arvia, A.J., (1998) J. Chem. Phys., 109, pp. 5703-5706Terán Arce, F., Vela, M.E., Salvarezza, R.C., Arvia, A.J., (1998) Langmuir, 14, pp. 7203-7212Torrelles, X., Vericat, C., Vela, M.E., Fonticelli, M.H., Millone, M.A.D., Felici, R., Lee, T.-L., Salvarezza, R.C., (2006) J. Phys. Chem. B, 110, pp. 5586-5594Torres, E., Biedermann, P.U., Blumenau, A.T., (2009) Int. J. Quantum Chem., 109, pp. 3466-3472Torres, E., Blumenau, A.T., Biedermann, P.U., (2009) Phys. Rev. B, 79, p. 075440Touzov, I., Gorman, C.B., (1997) J. Phys. Chem. B, 101, pp. 5263-5276Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., (2004) J. Phys. Chem. A, 108, pp. 10311-10316Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., (2006) J. Chem. Phys., 124, p. 114304Tsuzuki, S., Luthi, H.P., (2001) J. Chem. Phys., 114, pp. 3949-3957Ulman, A., (1996) Chem. Rev., 96, pp. 1533-1554Vargas, M.C., Giannozzi, P., Selloni, A., Scoles, G., (2001) J. Phys. Chem. B, 105, pp. 9509-9513Vericat, C., Vela, M.E., Benitez, G., Carro, P., Salvarezza, R.C., (2010) Chem. Soc. Rev., 39, pp. 1805-1834Vericat, C., Vela, M.E., Benitez, G.A., Gago, J.A.M., Torrelles, X., Salvarezza, R.C., (2006) J. Phys. Condens. Matter, 18, p. 867. , RR 900Voznyy, O., Dubowski, J.J., Yates, J.J.T., Maksymovych, P., (2009) J. Am. Chem. Soc., 131, pp. 12989-12993Selloni, A., (2007) J. Phys. Chem. C, 111, pp. 12149-12151Whitesides, G.M., Mathias, J.P., Seto, C.T., (1991) Science, 254, pp. 1312-1319Widrig, C.A., Alves, C.A., Porter, M.D., (1991) J. Am. Chem. Soc., 113, pp. 2805-2810Yourdshahyan, Y., Rappe, A.M., (2002) J. Chem. Phys., 117, pp. 825-833Yu, M., Bovet, N., Satterley, C.J., Bengiõ, S., Lovelock, K.R.J., Milligan, P.K., Jones, R.G., Dhanak, V., (2006) Phys. Rev. Lett., 97, p. 166102http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9113/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9113oai:repositorio.utb.edu.co:20.500.12585/91132021-02-02 14:08:00.375Repositorio Institucional UTBrepositorioutb@utb.edu.co