Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes

This paper proposes a logarithmic transformation of voltages (LTVM) for the power flow in DC grids. This problem is non-linear due to the presence of constant power loads (CPLs), which also introduce a negative resistance effect that can create numerical instability for conventional algorithms. The...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9028
Acceso en línea:
https://hdl.handle.net/20.500.12585/9028
Palabra clave:
Direct-current networks
Linear power flow analysis
Logarithmic transformation of voltage magnitudes
Processing times
Voltage estimation errors
Electric load flow
Electric power transmission networks
Linear transformations
Mathematical transformations
MATLAB
Direct current
Power flow analysis
Processing time
Voltage estimation
Voltage magnitude
HVDC power transmission
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_1a2750dad769305d773b712608df4330
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9028
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
title Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
spellingShingle Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
Direct-current networks
Linear power flow analysis
Logarithmic transformation of voltage magnitudes
Processing times
Voltage estimation errors
Electric load flow
Electric power transmission networks
Linear transformations
Mathematical transformations
MATLAB
Direct current
Power flow analysis
Processing time
Voltage estimation
Voltage magnitude
HVDC power transmission
title_short Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
title_full Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
title_fullStr Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
title_full_unstemmed Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
title_sort Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
dc.subject.keywords.none.fl_str_mv Direct-current networks
Linear power flow analysis
Logarithmic transformation of voltage magnitudes
Processing times
Voltage estimation errors
Electric load flow
Electric power transmission networks
Linear transformations
Mathematical transformations
MATLAB
Direct current
Power flow analysis
Processing time
Voltage estimation
Voltage magnitude
HVDC power transmission
topic Direct-current networks
Linear power flow analysis
Logarithmic transformation of voltage magnitudes
Processing times
Voltage estimation errors
Electric load flow
Electric power transmission networks
Linear transformations
Mathematical transformations
MATLAB
Direct current
Power flow analysis
Processing time
Voltage estimation
Voltage magnitude
HVDC power transmission
description This paper proposes a logarithmic transformation of voltages (LTVM) for the power flow in DC grids. This problem is non-linear due to the presence of constant power loads (CPLs), which also introduce a negative resistance effect that can create numerical instability for conventional algorithms. The proposed methodology is applied to dc-microgrids, dc-distribution and multi-terminal high voltage DC transmission (MT-HVDC). Two main approximations are presented and compared in terms of computational performance and the accuracy of the solution. Simulation results performed in Matlab/Octave demonstrate the advantages of the proposed methodology using a complete set of test systems, from low to high voltage applications. The proposed methodology does not require any consideration about the topology of the grid (radial or meshed) or the number of constant power loads. © 2019 Elsevier B.V.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:48Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:48Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Electric Power Systems Research; Vol. 175
dc.identifier.issn.none.fl_str_mv 03787796
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9028
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2019.105887
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
36449223500
identifier_str_mv Electric Power Systems Research; Vol. 175
03787796
10.1016/j.epsr.2019.105887
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
36449223500
url https://hdl.handle.net/20.500.12585/9028
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066829378&doi=10.1016%2fj.epsr.2019.105887&partnerID=40&md5=03320c1785e20ad5ec2478f1c45ae2a5
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9028/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397575469924352
spelling 2020-03-26T16:32:48Z2020-03-26T16:32:48Z2019Electric Power Systems Research; Vol. 17503787796https://hdl.handle.net/20.500.12585/902810.1016/j.epsr.2019.105887Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364836449223500This paper proposes a logarithmic transformation of voltages (LTVM) for the power flow in DC grids. This problem is non-linear due to the presence of constant power loads (CPLs), which also introduce a negative resistance effect that can create numerical instability for conventional algorithms. The proposed methodology is applied to dc-microgrids, dc-distribution and multi-terminal high voltage DC transmission (MT-HVDC). Two main approximations are presented and compared in terms of computational performance and the accuracy of the solution. Simulation results performed in Matlab/Octave demonstrate the advantages of the proposed methodology using a complete set of test systems, from low to high voltage applications. The proposed methodology does not require any consideration about the topology of the grid (radial or meshed) or the number of constant power loads. © 2019 Elsevier B.V.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066829378&doi=10.1016%2fj.epsr.2019.105887&partnerID=40&md5=03320c1785e20ad5ec2478f1c45ae2a5Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct-current networksLinear power flow analysisLogarithmic transformation of voltage magnitudesProcessing timesVoltage estimation errorsElectric load flowElectric power transmission networksLinear transformationsMathematical transformationsMATLABDirect currentPower flow analysisProcessing timeVoltage estimationVoltage magnitudeHVDC power transmissionMontoya O.D.Gil-González W.Garces A.Somerville, B., Constable, G., A Century of Innovation: Twenty Engineering Achievements that Transformed our Lives (2003), 1st edition Joseph Henry Press, National Academy of EngineeringElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electr. Power Syst. Res., 119, pp. 407-417Gavriluta, C., Candela, I., Citro, C., Luna, A., Rodriguez, P., Design considerations for primary control in multi-terminal VSC-HVDC grids (2015) Electr. Power Syst. Res., 122, pp. 33-41Hertem, D.V., Ghandhari, M., Multi-terminal VSC HVDC for the European supergrid: obstacles (2010) Renew. Sustain. Energy Rev., 14 (9), pp. 3156-3163Montoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2018) IEEE Trans. Circuits Syst. II, p. 1Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans. Circuits Syst. II, p. 1Garcés, A., Herrera, J., Gil-González, W., Montoya, O., Small-signal stability in low-voltage dc-grids (2018) 2018 IEEE ANDESCON, IEEE, pp. 1-5Simpson-Porco, J.W., Dorfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II Express Briefs, 62 (8), pp. 811-815Sanchez, S., Ortega, R., Gri no, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I Regul. Pap., 61 (7), pp. 2204-2211Barabanov, N., Ortega, R., Gri no, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I Regul. Pap., 63 (1), pp. 114-121Garces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153Gan, L., Low, S.H., Optimal power flow in direct current networks (2014) IEEE Trans. Power Syst., 29 (6), pp. 2892-2904Montoya, O.D., Grisales-Nore na, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal HVDC systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217Li, Z., Yu, J., Wu, Q.H., Approximate linear power flow using logarithmic transform of voltage magnitudes with reactive power and transmission loss consideration (2018) IEEE Trans. Power Syst., 33 (4), pp. 4593-4603Montoya, O.D., On linear analysis of the power flow equations for DC and AC grids with CPLs (2019) IEEE Trans. Circuits Syst. II, p. 1Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Nore na, L., Power flow analysis in DC grids: two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, p. 1Grisales-Nore na, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., p. 1Montoya, O.D., Gil-González, W., Garrido, V.M., Voltage stability margin in DC grids with CPLs: a recursive Newton-Raphson approximation (2019) IEEE Trans. Circuits Syst. II, p. 1http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9028/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9028oai:repositorio.utb.edu.co:20.500.12585/90282021-02-02 15:25:42.921Repositorio Institucional UTBrepositorioutb@utb.edu.co