A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM®
This work shows the results of a numerical model developed to simulate the CBMS technique for the production of the Fe78Si9B13 metallic magnetic ribbons for application in electronics. The model proposes a numerical approximation to a Vogel-Fulcher-Tammann (VFT) expression as a method in the solidif...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8850
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8850
- Palabra clave:
- High speed cameras
Iron compounds
Melt spinning
Numerical methods
Silicon compounds
Solidification
Chill block melt spinnings
Crystallization temperature
Digital image analysis
Initial stabilities
Numerical approximations
Orders of magnitude
Solidification process
Temperature profiles
Transport properties
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_19df3d043c76518d83c3cdd5bfcf5e3f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8850 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® |
title |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® |
spellingShingle |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® High speed cameras Iron compounds Melt spinning Numerical methods Silicon compounds Solidification Chill block melt spinnings Crystallization temperature Digital image analysis Initial stabilities Numerical approximations Orders of magnitude Solidification process Temperature profiles Transport properties |
title_short |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® |
title_full |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® |
title_fullStr |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® |
title_full_unstemmed |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® |
title_sort |
A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM® |
dc.subject.keywords.none.fl_str_mv |
High speed cameras Iron compounds Melt spinning Numerical methods Silicon compounds Solidification Chill block melt spinnings Crystallization temperature Digital image analysis Initial stabilities Numerical approximations Orders of magnitude Solidification process Temperature profiles Transport properties |
topic |
High speed cameras Iron compounds Melt spinning Numerical methods Silicon compounds Solidification Chill block melt spinnings Crystallization temperature Digital image analysis Initial stabilities Numerical approximations Orders of magnitude Solidification process Temperature profiles Transport properties |
description |
This work shows the results of a numerical model developed to simulate the CBMS technique for the production of the Fe78Si9B13 metallic magnetic ribbons for application in electronics. The model proposes a numerical approximation to a Vogel-Fulcher-Tammann (VFT) expression as a method in the solidification process. This approximation is introduced into the “compressibleInterFoam” routine, included in the OpenFOAM® suite, originally developed for the simulation of two immiscible, non-isothermal and compressible fluids. This routine solves, the phase fraction transport using the Volume of Fluids (VOF) approach. The boundary conditions imposed in the model were experimentally validated by digital image analysis with a high-speed camera at 5602 fps for the determination of the temperature profiles. The phase change is represented as a growth of several orders of magnitude of the alloy viscosity (μ) as the temperature (T) decreases, reaching solidification around the crystallization temperature (Tg). Also, we establish the condition of initial stability of CBMS process (R > 1.5) for Peclet numbers close to 400, and the validity up to limits of rotation in the wheel close to 40 m s−1. The proposed methodology is validated with previous work. Encouraging results show that the solution of the CBMS process can be adequately simulated with the proposed approach. © 2019 Elsevier Masson SAS |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:29Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:29Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
International Journal of Thermal Sciences; Vol. 150 |
dc.identifier.issn.none.fl_str_mv |
12900729 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8850 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ijthermalsci.2019.106221 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56433990700 57212455415 14012202200 6602228807 24329839300 24537991200 |
identifier_str_mv |
International Journal of Thermal Sciences; Vol. 150 12900729 10.1016/j.ijthermalsci.2019.106221 Universidad Tecnológica de Bolívar Repositorio UTB 56433990700 57212455415 14012202200 6602228807 24329839300 24537991200 |
url |
https://hdl.handle.net/20.500.12585/8850 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Masson SAS |
publisher.none.fl_str_mv |
Elsevier Masson SAS |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076679317&doi=10.1016%2fj.ijthermalsci.2019.106221&partnerID=40&md5=e8a83adb89de9532831c3771611da041 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8850/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021728283656192 |
spelling |
2020-03-26T16:32:29Z2020-03-26T16:32:29Z2020International Journal of Thermal Sciences; Vol. 15012900729https://hdl.handle.net/20.500.12585/885010.1016/j.ijthermalsci.2019.106221Universidad Tecnológica de BolívarRepositorio UTB56433990700572124554151401220220066022288072432983930024537991200This work shows the results of a numerical model developed to simulate the CBMS technique for the production of the Fe78Si9B13 metallic magnetic ribbons for application in electronics. The model proposes a numerical approximation to a Vogel-Fulcher-Tammann (VFT) expression as a method in the solidification process. This approximation is introduced into the “compressibleInterFoam” routine, included in the OpenFOAM® suite, originally developed for the simulation of two immiscible, non-isothermal and compressible fluids. This routine solves, the phase fraction transport using the Volume of Fluids (VOF) approach. The boundary conditions imposed in the model were experimentally validated by digital image analysis with a high-speed camera at 5602 fps for the determination of the temperature profiles. The phase change is represented as a growth of several orders of magnitude of the alloy viscosity (μ) as the temperature (T) decreases, reaching solidification around the crystallization temperature (Tg). Also, we establish the condition of initial stability of CBMS process (R > 1.5) for Peclet numbers close to 400, and the validity up to limits of rotation in the wheel close to 40 m s−1. The proposed methodology is validated with previous work. Encouraging results show that the solution of the CBMS process can be adequately simulated with the proposed approach. © 2019 Elsevier Masson SASAgencia Nacional de Promoción Científica y Tecnológica, ANPCyT Consejo Nacional de Investigaciones Científicas y Técnicas, CONICETThe authors of this work acknowledge the support of CONICET – Argentina; ANPCyT – Argentina (FS Nano 03/10 program), UBACyT 20020150100088BA , PDTS (CIN-CONICET) PDTS 0362 project, and UADE through grants P17T03 for funding the present research. Appendix ARecurso electrónicoapplication/pdfengElsevier Masson SAShttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076679317&doi=10.1016%2fj.ijthermalsci.2019.106221&partnerID=40&md5=e8a83adb89de9532831c3771611da041A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM®info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1High speed camerasIron compoundsMelt spinningNumerical methodsSilicon compoundsSolidificationChill block melt spinningsCrystallization temperatureDigital image analysisInitial stabilitiesNumerical approximationsOrders of magnitudeSolidification processTemperature profilesTransport propertiesBarone M.Barceló F.Pagnola M.Larreteguy A.Marrugo A.G.Useche Vivero, JairoPavuna, D., Production of metallic glass ribbons by the chill-block melt spinning technique in stabilized laboratory conditions (1981) J. Mater. Sci., 16, pp. 2419-2433Pozo Lopez, G., Fabietti, L.M., Condo, A.M., Urreta, S.E., Microstructure and soft magnetic properties of Finemet-type ribbons obtained by twin-roller melt-spinning (2010) J. Magn. Magn. Mater., 322, pp. 3088-3093Pagnola, M., Malmoria, M., Barone, M., Biot number behaviour in the chill block melt spinning (CBMS) process (2016) Appl. Therm. Eng., 103, pp. 807-811Tkatch, V.I., Limanovski, A.I., Denisenko, S.N., Rassolov, S.G., The effect of the melt-spinning processing parameters on the rate of cooling (2002) Mater. Sci. Eng., A, 323, pp. 91-96Carpenter, J.K., Heat transfer and solidification in planar-flow melt-spinning high wheel speeds (1997) Int. J. Heat Mass Transf., 40 (9), pp. 1993-2007Pagnola, M., Malmoria, M., Barone, M., Sirkin, H., Analysis of Fe78Si9B13 (%at.)ribbons of noncommercial scrap materials produced by melt spinning equipment (2014) Multidiscip. Model. Mater. Struct., 10 (4), pp. 511-524Muraca, D., Silveyra, J., Pagnola, M., Cremaschi, M., Nanocrystals magnetic contribution to FINEMET type soft magnetic materials with Ge addition (2009) J. Magn. Magn. Mater., 321, pp. 3640-3645Liu, H., Chen, W., Qiu, S., Liu, G., Numerical simulation of initial development of fluid flow and heat transfer in planar flow casting (2009) Metall. Mater. Trans. B, 40 (3), pp. 411-429Takata, Y., Shirakawa, H., Sasaki, H., Kuroki, T., Ito, T., Numerical analysis of rapid solidification in a single roller process (1999) Scripta Techn. Heat Trans. Asian Res., 28 (1), pp. 34-49Bussman, M., Mostaghimi, J., Kirk, D.W., Graydon, J.W., A numerical study of steady flow and temperature field within a melt spinning puddle (2002) Int. J. Heat Mass Transf., 45 (19), pp. 3997-4010Barone, M., Barceló, F., Useche, J., Larreteguy, A., Pagnola, M., Analysis and simulation of thermal/viscose model for Melt Spinning process (2018) Rev. UIS Ing., 17 (1), pp. 185-190Wang, C., (2010) Numerical Modeling of Free Surface and Rapid Solidification for Simulation and Analysis of Melt Spinning, pp. 1-138. , Pro Quest, UMI Dissertation Publishing Iowa State University Ames 1243778733/1-243-77873-3Pagnola, M., Barone, M., Malmoria, M., Sirkin, H., Influence of z/w relation in Chill Block Melt Spinning (CBMS) process and analysis of thickness in ribbons (2015) Multidiscip. Model. Mater. Struct., 11 (1), pp. 23-31Pagnola, M., Vivero, J., Marrugo, A., Magnetic materials by melt spinning method, structural characterization, and numerical modeling (2018) New Uses of Micro and Nanomaterials, 6, pp. 1-19. , InTechMarrugo, A., Barone, M., Useche, J., Pagnola, M., Experimental investigation of high-speed melt spinning by means of digital image analysis (2016) Latin America Optics and Photonics Conference, , Optical Society of America paper LTh2C.5Bizjan, B., Širok, B., Drnovšek, J., Pušnik, I., Temperature measurement of mineral melt by means of a high-speed camera (2015) Appl. Opt., 54 (26), pp. 7978-7984Wang, G., Matthys, E., Mathematical simulation of melt flow, heat transfer and non-equilibrium solidification in planar flow casting (2002) Model. Simul. Mater. Sci. Eng., 10 (1), pp. 35-55Sowjanya, M., Kishen Kumar Reddy, T., Cooling heel features and amorphous ribbon formation during planar flow melt spinning process (2014) J. Mater. Process. Technol., 214, pp. 1861-1870Carpenter, J., Steen, P., Heat transfer and solidification in planar-flow melt-spinning: high wheel speeds (1997) Int. J. Heat Mass Transf., 40 (9), pp. 1993-2007Steen, P.H., Fluid mechanics of spin casting of metals (1997) Annu. Rev. Fluid Mech., 29, pp. 373-397Pavuna, D., Production of metallic glass ribbons by the chill-block melt-spinning technique in stabilized laboratory conditions (1981) J. Mater. Sci., 16 (9), pp. 2419-2433Stephani, G., Mhlbach, H., Fiedler, H., Richter, G., Infrared measurements of the melt puddle in planar flow casting (1988) Mater. Sci. Eng., 98, pp. 29-32Pagnola, M., Malmoria, M., Barone, M., Sirkin, H., Analysis of Fe78Si9B13 (%at.) ribbons of noncommercial scrap materials produced by melt spinning equipment (2014) Multidiscip. Model. Mater. Struct., 10 (4), pp. 511-524Barceló, L.F., Barone, M., Larreteguy, A.E., Pagnola, M., Simulacion del proceso de Melt Spinning utilizando OpeFoam (2017) Mech. Comput., 35 (297). , Electronic ISSN 2591-3522Steen, P.H., Karcher, C., Fluid mechanics of spin casting of metals (1997) Annu. Rev. Fluid Mech., 29, pp. 373-397http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8850/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8850oai:repositorio.utb.edu.co:20.500.12585/88502023-04-24 09:18:25.679Repositorio Institucional UTBrepositorioutb@utb.edu.co |