Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources
The problem of the optimal placement and sizing of photovoltaic power plants in electrical power systems from high- to medium-voltage levels is addressed in this research from the point of view of the exact mathematical optimization. To represent this problem, a mixed-integer nonlinear programming m...
- Autores:
-
Buitrago-Velandia, Andrés Felipe
Montoya, Oscar Danilo
Gil-González, Walter
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10333
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10333
- Palabra clave:
- Chargeability factor
Reactive power capacity
Power loss minimization
Optimal power flow model
Photovoltaic generation
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UTB2_18fae3a873cf13f57cace96d6ed9d867 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10333 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources |
title |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources |
spellingShingle |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources Chargeability factor Reactive power capacity Power loss minimization Optimal power flow model Photovoltaic generation LEMB |
title_short |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources |
title_full |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources |
title_fullStr |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources |
title_full_unstemmed |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources |
title_sort |
Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources |
dc.creator.fl_str_mv |
Buitrago-Velandia, Andrés Felipe Montoya, Oscar Danilo Gil-González, Walter |
dc.contributor.author.none.fl_str_mv |
Buitrago-Velandia, Andrés Felipe Montoya, Oscar Danilo Gil-González, Walter |
dc.subject.keywords.spa.fl_str_mv |
Chargeability factor Reactive power capacity Power loss minimization Optimal power flow model Photovoltaic generation |
topic |
Chargeability factor Reactive power capacity Power loss minimization Optimal power flow model Photovoltaic generation LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The problem of the optimal placement and sizing of photovoltaic power plants in electrical power systems from high- to medium-voltage levels is addressed in this research from the point of view of the exact mathematical optimization. To represent this problem, a mixed-integer nonlinear programming model considering the daily demand and solar radiation curves was developed. The main advantage of the proposed optimization model corresponds to the usage of the reactive power capabilities of the power electronic converter that interfaces the photovoltaic sources with the power systems, which can work with lagging or leading power factors. To model the dynamic reactive power compensation, the η-coefficient was used as a function of the nominal apparent power converter transference rate. The General Algebraic Modeling System software with the BONMIN optimization package was used as a computational tool to solve the proposed optimization model. Two simulation cases composed of 14 and 27 nodes in transmission and distribution levels were considered to validate the proposed optimization model, taking into account the possibility of installing from one to four photovoltaic sources in each system. The results show that energy losses are reduced between 13% and 56% as photovoltaic generators are added with direct effects on the voltage profile improvement |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-29T19:08:17Z |
dc.date.available.none.fl_str_mv |
2021-07-29T19:08:17Z |
dc.date.issued.none.fl_str_mv |
2021-05-11 |
dc.date.submitted.none.fl_str_mv |
2021-07-29 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Buitrago-Velandia, A.F.; Montoya, O.D.; Gil-González, W. Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources. Resources 2021, 10, 47. https:// doi.org/10.3390/resources10050047 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10333 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Buitrago-Velandia, A.F.; Montoya, O.D.; Gil-González, W. Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources. Resources 2021, 10, 47. https:// doi.org/10.3390/resources10050047 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10333 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
17 páginas |
dc.format.medium.none.fl_str_mv |
Recurso en línea / Electrónico |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.sede.spa.fl_str_mv |
Campus Tecnológico |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Eléctrica |
dc.source.spa.fl_str_mv |
Resources 2021, 10, 47 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/1/resources-10-00047.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/4/resources-10-00047.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/5/resources-10-00047.pdf.jpg |
bitstream.checksum.fl_str_mv |
fe5cf61d71b29f0f758777e5dc3ec565 24013099e9e6abb1575dc6ce0855efd5 e20ad307a1c5f3f25af9304a7a7c86b6 f20f44f9d4fcf6dd6d495cb6cb8f4820 1eea3844eb67ae7d6ec82cb96262cb6d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021746775293952 |
spelling |
Buitrago-Velandia, Andrés Felipeb556a2e3-45ee-4c75-8ef3-0bb3269670deMontoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter72191491-1c75-451d-a5c5-f7f45373ecd02021-07-29T19:08:17Z2021-07-29T19:08:17Z2021-05-112021-07-29Buitrago-Velandia, A.F.; Montoya, O.D.; Gil-González, W. Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources. Resources 2021, 10, 47. https:// doi.org/10.3390/resources10050047https://hdl.handle.net/20.500.12585/10333Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of the optimal placement and sizing of photovoltaic power plants in electrical power systems from high- to medium-voltage levels is addressed in this research from the point of view of the exact mathematical optimization. To represent this problem, a mixed-integer nonlinear programming model considering the daily demand and solar radiation curves was developed. The main advantage of the proposed optimization model corresponds to the usage of the reactive power capabilities of the power electronic converter that interfaces the photovoltaic sources with the power systems, which can work with lagging or leading power factors. To model the dynamic reactive power compensation, the η-coefficient was used as a function of the nominal apparent power converter transference rate. The General Algebraic Modeling System software with the BONMIN optimization package was used as a computational tool to solve the proposed optimization model. Two simulation cases composed of 14 and 27 nodes in transmission and distribution levels were considered to validate the proposed optimization model, taking into account the possibility of installing from one to four photovoltaic sources in each system. The results show that energy losses are reduced between 13% and 56% as photovoltaic generators are added with direct effects on the voltage profile improvementUniversidad Tecnológica de Bolívar17 páginasRecurso en línea / Electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Resources 2021, 10, 47Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sourcesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Chargeability factorReactive power capacityPower loss minimizationOptimal power flow modelPhotovoltaic generationLEMBCartagena de IndiasCampus TecnológicoIngeniería EléctricaInvestigadoresYoon, M.; Lee, J.; Song, S.; Yoo, Y.; Jang, G.; Jung, S.; Hwang, S. Utilization of Energy Storage System for Frequency Regulation in Large-Scale Transmission System. Energies 2019, 12, 3898.Bhatti, B.A.; Broadwater, R.; Dilek, M. Analyzing Impact of Distributed PV Generation on Integrated Transmission & Distribution System Voltage Stability—A Graph Trace Analysis Based Approach. Energies 2020, 13, 4526.Comisión de Regulación de Energía y Gas. CREG. Electrical Sector 2020. Available online: https://www.creg.gov.co/energia-electrica (accessed on 11 September 2020).Sorrentino, E.; Gupta, N. Summary of useful concepts about the coordination of directional overcurrent protections. CSEE J. Power Energy Syst. 2019, 5, 382–390.Ebrahimzadeh, E.; Blaabjerg, F.; Lund, T.; Nielsen, J.G.; Kjær, P.C. Modelling and Stability Analysis of Wind Power Plants Connected to Weak Grids. Appl. Sci. 2019, 9, 4695.Murty, P. Power Flow Studies. In Power Systems Analysis; Elsevier: Amsterdam, The Netherlands, 2017; pp. 205–276. [Google Scholar]Montoya, O.; Gil-González, W.; Hernández, J. Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions. Electronics 2020, 9, 2097.Mundo-Hernández, J.; de Celis Alonso, B.; Hernández-Álvarez, J.; de Celis-Carrillo, B. An overview of solar photovoltaic energy in Mexico and Germany. Renew. Sustain. Energy Rev. 2014, 31, 639–649.Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J.; Hernandez-Escobedo, Q. Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves. Sustainability 2020, 12, 2983.Streimikiene, D.; Klevas, V. Promotion of renewable energy in Baltic States. Renew. Sustain. Energy Rev. 2007, 11, 672–687.Gil-González, W.; Montoya, O.; Escobar-Mejía, A.; Hernández, J. LQR-Based Adaptive Virtual Inertia for Grid Integration of Wind Energy Conversion System Based on Synchronverter Model. Electronics 2021, 9, 1022.Arya, L.; Koshti, A.; Choube, S. Distributed generation planning using differential evolution accounting voltage stability consideration. Int. J. Electr. Power Energy Syst. 2012, 42, 196–207.Huy, P.D.; Ramachandaramurthy, V.K.; Yong, J.Y.; Tan, K.M.; Ekanayake, J.B. Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage. Energy 2020, 195, 117011.Maleki, A.; Askarzadeh, A. Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept. Sol. Energy 2014, 107, 227–235.Abou El-Ela, A.; Allam, S.; Shatla, M. Maximal optimal benefits of distributed generation using genetic algorithms. Electr. Power Syst. Res. 2010, 80, 869–877.Yang, N.C.; Chen, T.H. Evaluation of maximum allowable capacity of distributed generations connected to a distribution grid by dual genetic algorithm. Energy Build. 2011, 43, 3044–3052.Ganguly, S.; Samajpati, D. Distributed generation allocation with on-load tap changer on radial distribution networks using adaptive genetic algorithm. Appl. Soft Comput. 2017, 59, 45–67.Pesaran, H.A.M.; Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Seyedi, H. A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks. Energy 2020, 209, 118218.Soroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Berlin/Heidelberg, Germany, 2017.Zeynali, S.; Rostami, N.; Feyzi, M. Multi-objective optimal short-term planning of renewable distributed generations and capacitor banks in power system considering different uncertainties including plug-in electric vehicles. Int. J. Electr. Power Energy Syst. 2020, 119, 105885.Naval, N.; Sánchez, R.; Yusta, J.M. A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation. Renew. Energy 2020, 151, 57–69.Mena, R.; Hennebel, M.; Li, Y.F.; Zio, E. Self-adaptable hierarchical clustering analysis and differential evolution for optimal integration of renewable distributed generation. Appl. Energy 2014, 133, 388–402.Quezada, C.; Torres, J.; Quizhpi, F. Optimal Location of Capacitor Banks by Implementing Heuristic Methods in Distribution Networks. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaiso, Chile, 13–27 November 2019; pp. 1–6.Adewuyi, O.B.; Shigenobu, R.; Ooya, K.; Senjyu, T.; Howlader, A.M. Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection. Electr. Power Syst. Res. 2019, 172, 303–312.Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710.Arellanes, A.; Rodríguez, E.; Orosco, R.; Perez, J.; Beristáin, J. Three-phase grid-tied photovoltaic inverter with reactive power compensation capability. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017; pp. 1–6.Carrasco, M.; Mancilla-David, F. Maximum power point tracking algorithms for single-stage photovoltaic power plants under time-varying reactive power injection. Sol. Energy 2016, 132, 321–331.Montoya, O.D.; Garcés-Ruíz, A.; Gil-González, W.; Escobar-Mejía, A. Compensación De Potencia Reactiva En Sistemas De Distribución: Un Enfoque Formal Basado en Optimización Matemática, 1st ed.; Ediciones UTB: Cartagena, Colombia, 2020.Naghiloo, A.; Abbaspour, M.; Mohammadi-Ivatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565.He, H.; Chen, A.; Yin, M.; Ma, Z.; You, J.; Xie, X.; Wang, Z.; An, Q. Optimal Allocation Model of Water Resources Based on the Prospect Theory. Water 2019, 11, 1289.Andrei, N. Nonlinear Optimization Applications Using the GAMS Technology; Springer US: New York, NY, USA, 2013.Kaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617.Rutherford, T.F. Extension of GAMS for complementarity problems arising in applied economic analysis. J. Econ. Dyn. Control 1995, 19, 1299–1324.Ćalasan, M.; Kecojević, K.; Lukačević, O.; Ali, Z.M. Testing of influence of SVC and energy storage device’s location on power system using GAMS. In Uncertainties in Modern Power Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 297–342.Montoya, O.D.; Gil-González, W.; Hernández, J.C.; Giral-Ramírez, D.A.; Medina-Quesada, A. A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders. Energies 2020, 13, 4440.Yang, L.; Gao, X.; Li, Z.; Jia, D.; Jiang, J. Nowcasting of Surface Solar Irradiance Using FengYun-4 Satellite Observations over China. Remote Sens. 2019, 11, 1984.XM. Real-Time Power Demand. 2020. Available online: https://www.xm.com.co.aspx (accessed on 7 March 2020).Benavides, H.; Simbaqueva, O.; Zapata, H. Atlas of Solar, Ultraviolet and Ozone Radiation of Colombia; Technical Report, Alianza entre IDEAM Y UPME; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogota, Colombia, 2018. (In Spanish)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALresources-10-00047.pdfresources-10-00047.pdfArtículoapplication/pdf459675https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/1/resources-10-00047.pdffe5cf61d71b29f0f758777e5dc3ec565MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTresources-10-00047.pdf.txtresources-10-00047.pdf.txtExtracted texttext/plain51029https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/4/resources-10-00047.pdf.txtf20f44f9d4fcf6dd6d495cb6cb8f4820MD54THUMBNAILresources-10-00047.pdf.jpgresources-10-00047.pdf.jpgGenerated Thumbnailimage/jpeg100437https://repositorio.utb.edu.co/bitstream/20.500.12585/10333/5/resources-10-00047.pdf.jpg1eea3844eb67ae7d6ec82cb96262cb6dMD5520.500.12585/10333oai:repositorio.utb.edu.co:20.500.12585/103332021-07-30 02:00:02.423Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |