Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas

Particulate matter, PM10 and PM2.5, represents common air pollutants in cities and constitute a considerable threat to public health impacting daily activity of people living in city. In large cities, the main sources of PM10 and PM2.5 are diesel engine exhaust, brake dust, and particulate matter fr...

Full description

Autores:
Sierra Porta, David
Solano Correa, Yady Tatiana
Tarazona Alvarado, Miguel
Nuñez de Villavicencio, Luis Alberto
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11849
Acceso en línea:
https://hdl.handle.net/20.500.12585/11849
https://doi.org/10.1002/clen.202200222
Palabra clave:
Pollution
Remote Sensing
Tree Coverage
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_188b3593c2fce6f1dbee3daa711b22fd
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11849
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
title Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
spellingShingle Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
Pollution
Remote Sensing
Tree Coverage
title_short Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
title_full Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
title_fullStr Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
title_full_unstemmed Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
title_sort Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas
dc.creator.fl_str_mv Sierra Porta, David
Solano Correa, Yady Tatiana
Tarazona Alvarado, Miguel
Nuñez de Villavicencio, Luis Alberto
dc.contributor.author.none.fl_str_mv Sierra Porta, David
Solano Correa, Yady Tatiana
Tarazona Alvarado, Miguel
Nuñez de Villavicencio, Luis Alberto
dc.subject.keywords.es_CO.fl_str_mv Pollution
Remote Sensing
Tree Coverage
topic Pollution
Remote Sensing
Tree Coverage
description Particulate matter, PM10 and PM2.5, represents common air pollutants in cities and constitute a considerable threat to public health impacting daily activity of people living in city. In large cities, the main sources of PM10 and PM2.5 are diesel engine exhaust, brake dust, and particulate matter from vehicle tires. These particles can be deposited, filtered, and considerably reduced if there is a vegetative surface in the neighborhoods, thus eliminating a part of these particles and reducing their harmful footprint. This study evaluates the effect of tree coverage in urban areas on PM10 and PM2.5 removal considering air quality monitoring stations. Estimation of tree coverage is made by using high spatial and temporal resolution satellite images from Planet constellations. An empirical relationship between these two variables, with an acceptable correlation (R2 = 0.478 and R2 = 0.589 for PM10 and PM2.5, respectively), is obtained. A higher abundance of green space is associated with significantly lower PM10 and PM2.5 values. Preliminary results suggest that the amount of tree coverage do cause some degree of air quality improvement and can be used to inform national clean air strategies aimed at reducing pollutant emissions.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-11T20:48:09Z
dc.date.available.none.fl_str_mv 2023-05-11T20:48:09Z
dc.date.issued.none.fl_str_mv 2023-03-16
dc.date.submitted.none.fl_str_mv 2023-05-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.es_CO.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.es_CO.fl_str_mv Sierra-Porta, D., Solano-Correa, Y.T., Tarazona-Alvarado, M., de Villavicencio, L.A.N., 2023. Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas. CLEAN – Soil, Air, Water 51, 2200222. https://doi.org/10.1002/clen.202200222
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11849
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/clen.202200222
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Sierra-Porta, D., Solano-Correa, Y.T., Tarazona-Alvarado, M., de Villavicencio, L.A.N., 2023. Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas. CLEAN – Soil, Air, Water 51, 2200222. https://doi.org/10.1002/clen.202200222
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11849
https://doi.org/10.1002/clen.202200222
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.es_CO.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.coverage.temporal.none.fl_str_mv 2023
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv CLEAN - Soil, Air Water - Vol. 1, No. 5
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/1/2023-J-Linking%20PM10%20and%20PM2%205%20Pollution%20Concentration%20through%20Tree%20Coverage%20in%20Urban.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/3/2023-J-Linking%20PM10%20and%20PM2%205%20Pollution%20Concentration%20through%20Tree%20Coverage%20in%20Urban.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/4/2023-J-Linking%20PM10%20and%20PM2%205%20Pollution%20Concentration%20through%20Tree%20Coverage%20in%20Urban.pdf.jpg
bitstream.checksum.fl_str_mv 564691da0f28b47ee7a6caecc974a300
e20ad307a1c5f3f25af9304a7a7c86b6
7b421dc3c7bb96e2d2ac62a19cb17b6c
babf42c86a420e033ea475685dff767e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021666247802880
spelling Sierra Porta, David62fe46fe-2160-4eac-8b0c-89e7fd6ce293Solano Correa, Yady Tatiana64432ee7-11fa-4bfb-b643-143125ef82c1Tarazona Alvarado, Miguelef024c8f-0c62-47e6-90e1-9de2e2566b23Nuñez de Villavicencio, Luis Alberto226a36a6-2d0b-4879-bc9c-31859dc58e5d20232023-05-11T20:48:09Z2023-05-11T20:48:09Z2023-03-162023-05-11Sierra-Porta, D., Solano-Correa, Y.T., Tarazona-Alvarado, M., de Villavicencio, L.A.N., 2023. Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas. CLEAN – Soil, Air, Water 51, 2200222. https://doi.org/10.1002/clen.202200222https://hdl.handle.net/20.500.12585/11849https://doi.org/10.1002/clen.202200222Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarParticulate matter, PM10 and PM2.5, represents common air pollutants in cities and constitute a considerable threat to public health impacting daily activity of people living in city. In large cities, the main sources of PM10 and PM2.5 are diesel engine exhaust, brake dust, and particulate matter from vehicle tires. These particles can be deposited, filtered, and considerably reduced if there is a vegetative surface in the neighborhoods, thus eliminating a part of these particles and reducing their harmful footprint. This study evaluates the effect of tree coverage in urban areas on PM10 and PM2.5 removal considering air quality monitoring stations. Estimation of tree coverage is made by using high spatial and temporal resolution satellite images from Planet constellations. An empirical relationship between these two variables, with an acceptable correlation (R2 = 0.478 and R2 = 0.589 for PM10 and PM2.5, respectively), is obtained. A higher abundance of green space is associated with significantly lower PM10 and PM2.5 values. Preliminary results suggest that the amount of tree coverage do cause some degree of air quality improvement and can be used to inform national clean air strategies aimed at reducing pollutant emissions.10 páginasapplication/pdfengCLEAN - Soil, Air Water - Vol. 1, No. 5Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areasinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1PollutionRemote SensingTree Coverageinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasPúblico generalWorld Health Organization, Air Quality Guidelines for Europe, WHO Regional Office for Europe, Copenhagen, Denmark 2000. https:// apps.who.int/iris/handle/10665/107335Environmental Protection Agency (EPA), Fed Regist 2020, 85. https:// www.govinfo.gov/content/pkg/FR-2020-12-18/pdf/2020-27125.pdfO. Ogunkunle, N. A. Ahmed, Sustainability 2021, 13, 5465C.-Y. Lee, L.-Y. Lin, H.-C. Chuang, K.-F. Ho, K.-J. Chuang, Atmosphere 2022, 13, 631M. Calvia, Cleaner Responsible Consumption 2022, 7, 100090.M. S. Hammer, A. van Donkelaar, C. Li, A. Lyapustin, A. M. Sayer, N. C. Hsu, R. C. Levy, M. J. Garay, O. V. Kalashnikova, R. A. Kahn, Environ. Sci. Technol. 2020, 54, 7879.P. A. Owusu, S. A. Sarkodie, Sci. Total Environ. 2020, 742, 140636I. Eguiluz-Gracia, A. G. Mathioudakis, S. Bartel, S. J. H. Vijverberg, E. Fuertes, P. Comberiati, Y. S. Cai, P. V. Tomazic, Z. Diamant, J. Vestbo, Allergy 2020, 75, 2170Y. Raziani, S. Raziani, J. Chem. Rev. 2021, 3, 83A. Pandey, M. Brauer, M. L. Cropper, K. Balakrishnan, P. Mathur, S. Dey, B. Turkgulu, G. A. Kumar, M. Khare, G. Beig, Lancet Planet Health 2021, 5, e25H. L. Brumberg, C. J. Karr, A. Bole, S. Ahdoot, S. J. Balk, A. S. Bernstein, L. G. Byron, P. J. Landrigan, S. M. Marcus, A. L. Nerlinger, Pediatrics 2021, 147, https://doi.org/10.1542/peds.2021-051484I. E. Isphording, N. Pestel, J Environ Econ Manage 2021, 108, 102448.I. Hernandez Carballo, M. Bakola, D. Stuckler, Environ Res. 2022, 114155. https://doi.org/10.1016/j.envres.2022.114155K. Ravindra, T. Singh, S. Vardhan, A. Shrivastava, S. Singh, P. Kumar, S. Mor, J. Infect. Public Health 2022, 15, 187.M. E. Goldstone, Air Qual. Clim. Change 2015, 49, 35.Y. O. Khaniabadi, G. Goudarzi, S. M. Daryanoosh, A. Borgini, A. Tittarelli, A. De Marco, Environ. Sci. Pollut. Res. 2017, 24, 2781.K. Corada, H. Woodward, H. Alaraj, C. M. Collins, A. de Nazelle, Environ Pollut 2021, 269, 116104B. Kon´czak, M. Cempa, M. Deska, Environ Pollut 2021, 268, 115465.T. S. Eisenman, G. Churkina, S. P. Jariwala, P. Kumar, G. S. Lovasi, D. E. Pataki, K. R. Weinberger, T. H. Whitlow, Landscape Urban Plann. 2019, 187, 47G. Xu, L. Jiao, S. Zhao, M. Yuan, X. Li, Y. Han, B. Zhang, T. Dong, Atmosphere 2016, 7, 62.C. Zafra, Y. Angel, E. Torres, Atmos Pollut Res 2017, 8, 660.P. J. Irga, M. D. Burchett, F. R. Torpy, Atmos. Environ. 2015, 120, 173D. Velásquez Ciro, J. E. Cañón Barriga, I. C. Hoyos Rincón, Environ Monit Assess 2021, 7, 396.A. Russo, W. T. Chan, G. T. Cirella, Land 2021, 10, 788.W. Lin, Y. Sun, D. Wang, Y. Li, X. Yu, Sustainable Cities Soc. 2021, 70, 102915.E. Riondato, F. Pilla, A. Sarkar Basu, B. Basu, Sustainable Cities Soc. 2020, 61, 102356A. G. McDonald, W. J. Bealey, D. Fowler, U. Dragosits, U. Skiba, R. I. Smith, R. G. Donovan, H. E. Brett, C. N. Hewitt, E. Nemitz, Atmos. Environ. 2007, 41, 8455W. Zhang, B. Wang, X. Niu, Forests 2017, 8, 92W. Selmi, C. Weber, E. Rivière, N. Blond, L. Mehdi, D. Nowak, Urban For. Urban Greening 2016, 17, 192J. Wu, Y. Wang, S. Qiu, J. Peng, Sci. Total Environ. 2019, 688, 673M. T. I. Cabaraban, C. N. Kroll, S. Hirabayashi, D. J. Nowak, Environ Pollut 2013, 176, 123J. Lin, C. N. Kroll, D. J. Nowak, Urban For. Urban Greening 2021, 60, 127062.D. J. Nowak, D. E. Crane, J. C. Stevens, Urban For. Urban Greening 2006, 4, 115D. J. Nowak, S. Hirabayashi, A. Bodine, R. Hoehn, Environ Pollut 2013, 178, 395.D. J. Nowak, S. Hirabayashi, A. Bodine, E. Greenfield, Environ Pollut 2014, 193, 119S. Hirabayashi, C. N. Kroll, D. J. Nowak, Citeseer 2012, 36. https://www.itreetools.org/documents/60/i-Tree_Eco_Dry_ Deposition_Model_Descriptions_V1.5.pdfR. Weller, D. Gouverneur, Z. Drozdz, B. Ye, J. Landscape Archit. 2021, 16, 76.US Environmental Protection Agency, Fed Regist. EPA Publication 530- SW-88-011, 1988, 53, 33314.Y. T. Solano-Correa, F. Bovolo, L. Bruzzone, IEEE Trans. Geosci. Remote Sens. 2019, 57, 7579.J. W. Rouse, R. H. Haas, J. A. Schell, D. W. Deering, in Third Earth Resources Technology Satellite-1 Symposium, Vol. 1: Technical Presentations Section A, NASA, Washington, DC 1974, p. 309.B. C. Gao, Remote Sens. Environ. 1996, 58, 257.M. Sezgin, B. Sankur, J Electron Imaging 2004, 13, 146N. C. Chung, B. Z. Miasojedow, M. Startek, A. Gambin, BMC Bioinf. 2019, 15, 1.Y. Li, G. Jiang, Y. Wang, Z. Cai, Q. Zhang, Atmos. Environ. 2008, 42, 2037.Y. Li, P. Wang, L. Ding, X. Li, T. Wang, Q. Zhang, H. Yang, G. Jiang, F. Wei, Chemosphere 2010, 79, 253E. Menichini, N. Iacovella, F. Monfredini, L. Turrio-Baldassarri, Chemosphere 2007, 69, 422.E. Abad, K. Martínez, L. Gustems, R. Gomez, X. Guinart, I. Hernández, J. Rivera, Chemosphere 2007, 67, 1709.L. S. Vailshery, M. Jaganmohan, H. Nagendra, Urban For. Urban Greening 2013, 12, 408.P. Hidas, G. R. Shiran, J. A. Black, presented at the 30th International Symposium on Automotive Technology and Automation, Florence, Italy 1997.L. P. Clark, D. B. Millet, J. D. Marshall, Environ. Sci. Technol. 2011, 45, 7028.WorldHealth Organization, Urban Planning, Environment and Health: From Evidence to Policy Action, WHO, Geneva, Switzerland 2010. https://www.cabdirect.org/cabdirect/abstract/20103308516A. Addas, G. Alserayhi, SAGE Open 2020, 10, 215824402092060W. Kuang, Y. Dou, Remote Sens. 2020, 12, 1929World Health Organization, Urban Green Spaces: A Brief for Action, WHO, Geneva, Switzerland 2017. https://apps.who.int/iris/handle/ 10665/344116T. T. Tura, T. Soromessa, S. Leta, M. Argew, Z. Eshetu, Taiwania 2016, 61, 305. https://doi.org/10.6165/tai.2016.61.305T. Gao, F. Liu, Y. Wang, S. Mu, L. Qiu, Forests 2020, 11, 950.M. Chen, F. Dai, B. Yang, S. Zhu, Building Environ. 2019, 158, 1.S. Arghavani, H. Malakooti, A.-A. Ali Akbari Bidokhti, J. Cleaner Prod. 2020, 261, 121183.Y. M. Bar-On, R. Phillips, R. Milo, Proc.Natl. Acad. Sci. USA 2018, 115, 6506.T.W. Crowther, H. B. Glick, K. R. Covey, C. Bettigole, D. S. Maynard, S. M. Thomas, J. R. Smith, G. Hintler, M. C. Duguid, G. Amatulli, Nature 2015, 525, 201.D. Sierra Porta, Dataset: Air quality Bogota. Mendeley Data, V1, 2022. https://doi.org/10.17632/z6wtdbkc5b.1.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL2023-J-Linking PM10 and PM2 5 Pollution Concentration through Tree Coverage in Urban.pdf2023-J-Linking PM10 and PM2 5 Pollution Concentration through Tree Coverage in Urban.pdfapplication/pdf1553325https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/1/2023-J-Linking%20PM10%20and%20PM2%205%20Pollution%20Concentration%20through%20Tree%20Coverage%20in%20Urban.pdf564691da0f28b47ee7a6caecc974a300MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT2023-J-Linking PM10 and PM2 5 Pollution Concentration through Tree Coverage in Urban.pdf.txt2023-J-Linking PM10 and PM2 5 Pollution Concentration through Tree Coverage in Urban.pdf.txtExtracted texttext/plain54684https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/3/2023-J-Linking%20PM10%20and%20PM2%205%20Pollution%20Concentration%20through%20Tree%20Coverage%20in%20Urban.pdf.txt7b421dc3c7bb96e2d2ac62a19cb17b6cMD53THUMBNAIL2023-J-Linking PM10 and PM2 5 Pollution Concentration through Tree Coverage in Urban.pdf.jpg2023-J-Linking PM10 and PM2 5 Pollution Concentration through Tree Coverage in Urban.pdf.jpgGenerated Thumbnailimage/jpeg10307https://repositorio.utb.edu.co/bitstream/20.500.12585/11849/4/2023-J-Linking%20PM10%20and%20PM2%205%20Pollution%20Concentration%20through%20Tree%20Coverage%20in%20Urban.pdf.jpgbabf42c86a420e033ea475685dff767eMD5420.500.12585/11849oai:repositorio.utb.edu.co:20.500.12585/118492023-05-12 00:00:38.194Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=