Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization

This paper presents a metaheuristic optimization technique named back hole optimization (BHO) for solving the problem of optimal dimensioning of distributed generation in radial distribution networks. This problem is formulated as a conventional optimal power flow problem in ac power grids. A master...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8858
Acceso en línea:
https://hdl.handle.net/20.500.12585/8858
Palabra clave:
Black-hole optimization
Complex domain formulation
Distributed generation
Optimal power flow
Acoustic generators
Distributed power generation
Electric load flow
Gravitation
MATLAB
Particle swarm optimization (PSO)
Stars
Black holes
Complex domains
Distributed generators
Meta-heuristic optimization techniques
Optimal power flow problem
Optimal power flows
Optimization techniques
Radial distribution networks
Electric power transmission networks
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_185f383019322c8f7f965a0a7bae0fee
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8858
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
title Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
spellingShingle Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
Black-hole optimization
Complex domain formulation
Distributed generation
Optimal power flow
Acoustic generators
Distributed power generation
Electric load flow
Gravitation
MATLAB
Particle swarm optimization (PSO)
Stars
Black holes
Complex domains
Distributed generators
Meta-heuristic optimization techniques
Optimal power flow problem
Optimal power flows
Optimization techniques
Radial distribution networks
Electric power transmission networks
title_short Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
title_full Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
title_fullStr Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
title_full_unstemmed Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
title_sort Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization
dc.subject.keywords.none.fl_str_mv Black-hole optimization
Complex domain formulation
Distributed generation
Optimal power flow
Acoustic generators
Distributed power generation
Electric load flow
Gravitation
MATLAB
Particle swarm optimization (PSO)
Stars
Black holes
Complex domains
Distributed generators
Meta-heuristic optimization techniques
Optimal power flow problem
Optimal power flows
Optimization techniques
Radial distribution networks
Electric power transmission networks
topic Black-hole optimization
Complex domain formulation
Distributed generation
Optimal power flow
Acoustic generators
Distributed power generation
Electric load flow
Gravitation
MATLAB
Particle swarm optimization (PSO)
Stars
Black holes
Complex domains
Distributed generators
Meta-heuristic optimization techniques
Optimal power flow problem
Optimal power flows
Optimization techniques
Radial distribution networks
Electric power transmission networks
description This paper presents a metaheuristic optimization technique named back hole optimization (BHO) for solving the problem of optimal dimensioning of distributed generation in radial distribution networks. This problem is formulated as a conventional optimal power flow problem in ac power grids. A master-slave methodology is proposed to solve this optimization problem. In the master stage the BHO technique decides the power output of each distributed generator (DG), while slave stage is responsible for solving the resulting power flow problem via classical sweep backward/forward technique. As comparison methods, classical particle swarm optimization as well as interior point methods are used. Two classical test systems with radial topologiesy and 33 and 69 nodes are used for numerical validations by using the MATLAB programming environment. Simulation results show the quality of the proposed optimization technique for power losses reduction in comparison with large-scale used optimization approaches available in specialized literature. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:31Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:31Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.isbn.none.fl_str_mv 9781538678428
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8858
dc.identifier.doi.none.fl_str_mv 10.1109/EPIM.2018.8756354
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57210170020
55791991200
57205565936
22836502400
identifier_str_mv 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
9781538678428
10.1109/EPIM.2018.8756354
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57210170020
55791991200
57205565936
22836502400
url https://hdl.handle.net/20.500.12585/8858
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 14 November 2018 through 16 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069788404&doi=10.1109%2fEPIM.2018.8756354&partnerID=40&md5=7a6f28d2ce047f5214b68e1d84f5372e
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8858/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021581227163648
spelling 2020-03-26T16:32:31Z2020-03-26T16:32:31Z20182018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 20189781538678428https://hdl.handle.net/20.500.12585/885810.1109/EPIM.2018.8756354Universidad Tecnológica de BolívarRepositorio UTB5691956410057210170020557919912005720556593622836502400This paper presents a metaheuristic optimization technique named back hole optimization (BHO) for solving the problem of optimal dimensioning of distributed generation in radial distribution networks. This problem is formulated as a conventional optimal power flow problem in ac power grids. A master-slave methodology is proposed to solve this optimization problem. In the master stage the BHO technique decides the power output of each distributed generator (DG), while slave stage is responsible for solving the resulting power flow problem via classical sweep backward/forward technique. As comparison methods, classical particle swarm optimization as well as interior point methods are used. Two classical test systems with radial topologiesy and 33 and 69 nodes are used for numerical validations by using the MATLAB programming environment. Simulation results show the quality of the proposed optimization technique for power losses reduction in comparison with large-scale used optimization approaches available in specialized literature. © 2018 IEEE.Universidad Nacional de Colombia, UN Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI UNAL-ITM-39823/P17211 Universidad Tecnológica de Pereira, UTPFINANCIAL SUPPORT This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, the PhD program in Engineering of la Universidad Tecnológica de Pereira, and the Univer-sidad Nacional de Colombia and the Instituto Tecnológico Metropolitano under the project UNAL-ITM-39823/P17211.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069788404&doi=10.1109%2fEPIM.2018.8756354&partnerID=40&md5=7a6f28d2ce047f5214b68e1d84f5372e9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimizationinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBlack-hole optimizationComplex domain formulationDistributed generationOptimal power flowAcoustic generatorsDistributed power generationElectric load flowGravitationMATLABParticle swarm optimization (PSO)StarsBlack holesComplex domainsDistributed generatorsMeta-heuristic optimization techniquesOptimal power flow problemOptimal power flowsOptimization techniquesRadial distribution networksElectric power transmission networks14 November 2018 through 16 November 2018Montoya O.D.Garrido Arévalo, Víctor ManuelGrisales-Noreña L.F.González-Montoya D.Ramos-Paja C.A.Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15 (5), pp. 890-900. , MayGrisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Lat. Am. Trans., 15 (6), pp. 1084-1090. , JuneGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27. , febGrisales, L.F., Montoya, O.D., Grajales, A., Hincapie, R.A., Granada, M., Optimal planning and operation of distribution systems considering distributed energy resources and automatic reclosers (2018) IEEE Lat. Am. Trans., 16 (1), pp. 126-134. , JanBouchekara, H., Optimal power flow using black-hole-based optimization approach (2014) Appl. Soft Comput., 24, pp. 879-888Montoya-Giraldo, O.D., Gil-González, W.J., Garcés-Ruiz, A., Optimal Power Flow for radial and mesh grids using semidefinite programming (2017) Tecnologicas, 20 (40). , decGarces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electr. Power Syst. Res., 130, pp. 222-229Baradar, M., Hesamzadeh, M.R., Ac power flow representation in conic format (2015) IEEE Trans. Power Syst., 30 (1), pp. 546-547. , JanBakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V., Optimal power flow by enhanced genetic algorithm (2002) IEEE Trans. Power Syst., 17 (2), pp. 229-236. , MayYan, W., Liu, F., Chung, C.Y., Wong, K.P., A hybrid genetic algorithm-interior point method for optimal reactive power flow (2006) IEEE Trans. Power Syst., 21 (3), pp. 1163-1169. , AugVlachogiannis, J.G., Hatziargyriou, N.D., Lee, K.Y., Ant colony system-based algorithm for constrained load flow problem (2005) IEEE Trans. Power Syst., 20 (3), pp. 1241-1249. , AugLuo, J., Shi, L., Ni, Y., A solution of optimal power flow incorporating wind generation and power grid uncertainties (2018) IEEE Access, 6, pp. 19681-19690Esmin, A.A.A., Lambert-Torres, G., De Souza, A.C.Z., A hybrid particle swarm optimization applied to loss power minimization (2005) IEEE Trans. Power Syst., 20 (2), pp. 859-866. , MayOnate-Yumbla, P.E., Ramirez, J.M., Coello-Coello, C.A., Optimal Power Flow Subject to Security Constraints Solved with a Particle Swarm Optimizer (2008) IEEE Trans. Power Syst., 23 (1), pp. 33-40. , FebAttia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel sine-cosine algorithm (2018) Int. J. Electr. Power Energy Syst., 99, pp. 331-343Algabalawy, M.A., Abdelaziz, A.Y., Mekhamer, S.F., Aleem, S.H.A., Considerations on optimal design of hybrid power generation systems using whale and sine cosine optimization algorithms (2018) J. Electr. Syst. Inf. Technol.Lenin, K., Reddy, B.R., Suryakalavathi, M., Hybrid Tabu searchsimulated annealing method to solve optimal reactive power problem (2016) Int. J. Electr. Power Energy Syst., 82, pp. 87-91Roa-Sepulveda, C., Pavez-Lazo, B., A solution to the optimal power flow using simulated annealing (2003) Int. J. Electr. Power Energy Syst., 25 (1), pp. 47-57Chang, G.W., Chu, S.Y., Wang, H.L., An improved backward/-forward sweep load flow algorithm for radial distribution systems (2007) IEEE Transactions on Power Systems, 22 (2), pp. 882-884. , MayPiotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M., How novel is the novel black hole optimization approach? (2014) Information Sciences, 267, pp. 191-200Kaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) International Journal of Electrical Power & Energy Systems, 63, pp. 609-617http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8858/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8858oai:repositorio.utb.edu.co:20.500.12585/88582023-05-26 10:05:26.913Repositorio Institucional UTBrepositorioutb@utb.edu.co