Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
This work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy wer...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9054
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9054
- Palabra clave:
- Air conditioning
Costs
Exergy
Insulation
Investments
Polyurethanes
Ships
Thermodynamics
Cooling load
Destroyed exergy
Exergetic
Per unit
Second Law of Thermodynamics
Ship air-conditioning
Thermo-economic
Thermo-economics
Thermal insulation
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_17b057bd9dcc86f497517551edb75d53 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9054 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation |
title |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation |
spellingShingle |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation Air conditioning Costs Exergy Insulation Investments Polyurethanes Ships Thermodynamics Cooling load Destroyed exergy Exergetic Per unit Second Law of Thermodynamics Ship air-conditioning Thermo-economic Thermo-economics Thermal insulation |
title_short |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation |
title_full |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation |
title_fullStr |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation |
title_full_unstemmed |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation |
title_sort |
Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation |
dc.subject.keywords.none.fl_str_mv |
Air conditioning Costs Exergy Insulation Investments Polyurethanes Ships Thermodynamics Cooling load Destroyed exergy Exergetic Per unit Second Law of Thermodynamics Ship air-conditioning Thermo-economic Thermo-economics Thermal insulation |
topic |
Air conditioning Costs Exergy Insulation Investments Polyurethanes Ships Thermodynamics Cooling load Destroyed exergy Exergetic Per unit Second Law of Thermodynamics Ship air-conditioning Thermo-economic Thermo-economics Thermal insulation |
description |
This work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy were used for research. It was observed that: (i) by increasing the thickness of the insulation the irreversibilities decreased, (ii) increases in the destroyed exergy increased generation of cooling load costs and (iii) costs per unit of exergy of heat load and area for the generation of cooling load and for investment in exergetic insulation, were minors for polyurethane. Copyright © 2014 by ASME. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9054 |
dc.identifier.doi.none.fl_str_mv |
10.1115/IMECE201438334 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56581610900 56581727500 56798119000 |
identifier_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B 10.1115/IMECE201438334 Universidad Tecnológica de Bolívar Repositorio UTB 56581610900 56581727500 56798119000 |
url |
https://hdl.handle.net/20.500.12585/9054 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
14 November 2014 through 20 November 2014 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926368744&doi=10.1115%2fIMECE201438334&partnerID=40&md5=d127cb711235ec2d63b2f4974e4dae45 Scopus2-s2.0-84926368744 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9054/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021800084897792 |
spelling |
2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6Bhttps://hdl.handle.net/20.500.12585/905410.1115/IMECE201438334Universidad Tecnológica de BolívarRepositorio UTB565816109005658172750056798119000This work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy were used for research. It was observed that: (i) by increasing the thickness of the insulation the irreversibilities decreased, (ii) increases in the destroyed exergy increased generation of cooling load costs and (iii) costs per unit of exergy of heat load and area for the generation of cooling load and for investment in exergetic insulation, were minors for polyurethane. Copyright © 2014 by ASME.ASMERecurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84926368744&doi=10.1115%2fIMECE201438334&partnerID=40&md5=d127cb711235ec2d63b2f4974e4dae45Scopus2-s2.0-84926368744ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulationinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAir conditioningCostsExergyInsulationInvestmentsPolyurethanesShipsThermodynamicsCooling loadDestroyed exergyExergeticPer unitSecond Law of ThermodynamicsShip air-conditioningThermo-economicThermo-economicsThermal insulation14 November 2014 through 20 November 2014Fajardo Cuadro, Juan GabrielSarria B.Alvarez Guerra M.Bejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Desing and Optimazation, , New York: John Wiley & SonsKotas, T.J., (1995) The Exergy Method of Thermal Plant Analysis, , London: Krieger Publishing CompanySakulpipatsin, P., Itard, L., An exergy applications for an analysis of buildings and HVAC systems (2010) Energy and Buildings, 42 (1), pp. 90-99Carpinlioglu, M., Yildirim, M., Kanoglu, M., Experimental study on an open cycle desiccant cooling system (2004) Applied Thermal Engineering, 24 (5-6), pp. 919-932Yao, Y., Chen, J., Global optimization of a central airconditioning system using decomposition-coordination method (2010) Energy and Buildings, 42 (5), pp. 570-583Calise, F., Thermoeconomic analysis and optimization of high efficiency solar heating and cooling systems for different italian school buildings and climates (2010) Energy and Buildings, 42 (7), pp. 992-1003Papanikolaou, A., Holistic ship design optimization (2010) Computer-Aided Design, 42 (11), pp. 1028-1044Sun, H., Faltinsen, O.M., Hydrodynamic forces on a semi-displacement ship at high speed (2012) Applied Ocean Research, 34 (1), pp. 68-77Tzabiras, G., Kontogianni, K., (2010) An Integrated Method for Predicting the Hydrodynamic Resistance of Low-CB Ships, 42 (11), pp. 985-1000Chen, X., Malenica, S., (2010) Hydrodynamic Pressure Distribution on Ship Hull at Very High Encounter Frequencies, 22 (5), pp. 532-537Chirica, I., Musa, S.D., Chiric, R., Bezne, E.F., Torsional behaviour of the ship hull composite model (2011) Computational Materials Science, 50 (3), pp. 1381-1386Yu, Y.H., Kim, B.G., Le, D.G., Cryogenic reliability of composite insulation panels for liquefied natural gas (LNG) ships (2012) Composite Structures, 94 (2), pp. 462-468Lee, S.J., Kim, J.S., (2011) Effects of Flow Velocity on Electrochemical Behavior of Seachest 5083-H116 AL Allloy for Ship, , Korea: ELSEVIERHart. Fulton, P.G.H., Cox, G., (2008) Ship Configurations and Insulation Design / Application(1992) Thermal Insulation Report, , SNAME, New York: SNAME(2005) Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of A Hot Box Apparatus, , ASTM, USA: ASTM(2007) Marine Gen Set Engine Performance C4.4 DITA 76 ekW/60 Hz/1800 RPM, , CATERPILLAR, USA: CATERPILLARArcieri, V., (2007) Patrulleras Fluviales Colombianas Navegarían en Los Ríos Tigris y Éufrates (en Irak), , El Tiempo(2010) Serpentine Curves, , TRANE, USASakulpipatsin, P., (2008) Exergy Efficient Building Desing, , Delft: Technische Universiteit DelftAbusoglu, A., Kanoglu, M., Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1-Formulations (2008) Applied Thermal Engineering, 29 (2-3), pp. 234-241Tsatsaronis, G., Park, M., (2002) On Avoidable and Unavoidable Exergy Destructions and Investment Cost in Thermal Systems, 43Wu, X., Zmeureanu, R., (2004) Exergy Analysis of Hvac Systems for A House in Montreal, , Vancouver: ESIM 2004Dincer, I., Rosen, M., (2007) Exergy: Energy. Environment. and Sustainable Development, , Oxford: Elsevierhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9054/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9054oai:repositorio.utb.edu.co:20.500.12585/90542023-05-26 09:18:44.376Repositorio Institucional UTBrepositorioutb@utb.edu.co |