Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation

This work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy wer...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9054
Acceso en línea:
https://hdl.handle.net/20.500.12585/9054
Palabra clave:
Air conditioning
Costs
Exergy
Insulation
Investments
Polyurethanes
Ships
Thermodynamics
Cooling load
Destroyed exergy
Exergetic
Per unit
Second Law of Thermodynamics
Ship air-conditioning
Thermo-economic
Thermo-economics
Thermal insulation
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_17b057bd9dcc86f497517551edb75d53
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9054
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
title Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
spellingShingle Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
Air conditioning
Costs
Exergy
Insulation
Investments
Polyurethanes
Ships
Thermodynamics
Cooling load
Destroyed exergy
Exergetic
Per unit
Second Law of Thermodynamics
Ship air-conditioning
Thermo-economic
Thermo-economics
Thermal insulation
title_short Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
title_full Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
title_fullStr Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
title_full_unstemmed Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
title_sort Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
dc.subject.keywords.none.fl_str_mv Air conditioning
Costs
Exergy
Insulation
Investments
Polyurethanes
Ships
Thermodynamics
Cooling load
Destroyed exergy
Exergetic
Per unit
Second Law of Thermodynamics
Ship air-conditioning
Thermo-economic
Thermo-economics
Thermal insulation
topic Air conditioning
Costs
Exergy
Insulation
Investments
Polyurethanes
Ships
Thermodynamics
Cooling load
Destroyed exergy
Exergetic
Per unit
Second Law of Thermodynamics
Ship air-conditioning
Thermo-economic
Thermo-economics
Thermal insulation
description This work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy were used for research. It was observed that: (i) by increasing the thickness of the insulation the irreversibilities decreased, (ii) increases in the destroyed exergy increased generation of cooling load costs and (iii) costs per unit of exergy of heat load and area for the generation of cooling load and for investment in exergetic insulation, were minors for polyurethane. Copyright © 2014 by ASME.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:51Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:51Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9054
dc.identifier.doi.none.fl_str_mv 10.1115/IMECE201438334
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56581610900
56581727500
56798119000
identifier_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B
10.1115/IMECE201438334
Universidad Tecnológica de Bolívar
Repositorio UTB
56581610900
56581727500
56798119000
url https://hdl.handle.net/20.500.12585/9054
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 14 November 2014 through 20 November 2014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926368744&doi=10.1115%2fIMECE201438334&partnerID=40&md5=d127cb711235ec2d63b2f4974e4dae45
Scopus2-s2.0-84926368744
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9054/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397619802669056
spelling 2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6Bhttps://hdl.handle.net/20.500.12585/905410.1115/IMECE201438334Universidad Tecnológica de BolívarRepositorio UTB565816109005658172750056798119000This work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy were used for research. It was observed that: (i) by increasing the thickness of the insulation the irreversibilities decreased, (ii) increases in the destroyed exergy increased generation of cooling load costs and (iii) costs per unit of exergy of heat load and area for the generation of cooling load and for investment in exergetic insulation, were minors for polyurethane. Copyright © 2014 by ASME.ASMERecurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84926368744&doi=10.1115%2fIMECE201438334&partnerID=40&md5=d127cb711235ec2d63b2f4974e4dae45Scopus2-s2.0-84926368744ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014Thermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulationinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAir conditioningCostsExergyInsulationInvestmentsPolyurethanesShipsThermodynamicsCooling loadDestroyed exergyExergeticPer unitSecond Law of ThermodynamicsShip air-conditioningThermo-economicThermo-economicsThermal insulation14 November 2014 through 20 November 2014Fajardo Cuadro, Juan GabrielSarria B.Alvarez Guerra M.Bejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Desing and Optimazation, , New York: John Wiley & SonsKotas, T.J., (1995) The Exergy Method of Thermal Plant Analysis, , London: Krieger Publishing CompanySakulpipatsin, P., Itard, L., An exergy applications for an analysis of buildings and HVAC systems (2010) Energy and Buildings, 42 (1), pp. 90-99Carpinlioglu, M., Yildirim, M., Kanoglu, M., Experimental study on an open cycle desiccant cooling system (2004) Applied Thermal Engineering, 24 (5-6), pp. 919-932Yao, Y., Chen, J., Global optimization of a central airconditioning system using decomposition-coordination method (2010) Energy and Buildings, 42 (5), pp. 570-583Calise, F., Thermoeconomic analysis and optimization of high efficiency solar heating and cooling systems for different italian school buildings and climates (2010) Energy and Buildings, 42 (7), pp. 992-1003Papanikolaou, A., Holistic ship design optimization (2010) Computer-Aided Design, 42 (11), pp. 1028-1044Sun, H., Faltinsen, O.M., Hydrodynamic forces on a semi-displacement ship at high speed (2012) Applied Ocean Research, 34 (1), pp. 68-77Tzabiras, G., Kontogianni, K., (2010) An Integrated Method for Predicting the Hydrodynamic Resistance of Low-CB Ships, 42 (11), pp. 985-1000Chen, X., Malenica, S., (2010) Hydrodynamic Pressure Distribution on Ship Hull at Very High Encounter Frequencies, 22 (5), pp. 532-537Chirica, I., Musa, S.D., Chiric, R., Bezne, E.F., Torsional behaviour of the ship hull composite model (2011) Computational Materials Science, 50 (3), pp. 1381-1386Yu, Y.H., Kim, B.G., Le, D.G., Cryogenic reliability of composite insulation panels for liquefied natural gas (LNG) ships (2012) Composite Structures, 94 (2), pp. 462-468Lee, S.J., Kim, J.S., (2011) Effects of Flow Velocity on Electrochemical Behavior of Seachest 5083-H116 AL Allloy for Ship, , Korea: ELSEVIERHart. Fulton, P.G.H., Cox, G., (2008) Ship Configurations and Insulation Design / Application(1992) Thermal Insulation Report, , SNAME, New York: SNAME(2005) Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of A Hot Box Apparatus, , ASTM, USA: ASTM(2007) Marine Gen Set Engine Performance C4.4 DITA 76 ekW/60 Hz/1800 RPM, , CATERPILLAR, USA: CATERPILLARArcieri, V., (2007) Patrulleras Fluviales Colombianas Navegarían en Los Ríos Tigris y Éufrates (en Irak), , El Tiempo(2010) Serpentine Curves, , TRANE, USASakulpipatsin, P., (2008) Exergy Efficient Building Desing, , Delft: Technische Universiteit DelftAbusoglu, A., Kanoglu, M., Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1-Formulations (2008) Applied Thermal Engineering, 29 (2-3), pp. 234-241Tsatsaronis, G., Park, M., (2002) On Avoidable and Unavoidable Exergy Destructions and Investment Cost in Thermal Systems, 43Wu, X., Zmeureanu, R., (2004) Exergy Analysis of Hvac Systems for A House in Montreal, , Vancouver: ESIM 2004Dincer, I., Rosen, M., (2007) Exergy: Energy. Environment. and Sustainable Development, , Oxford: Elsevierhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9054/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9054oai:repositorio.utb.edu.co:20.500.12585/90542023-05-26 09:18:44.376Repositorio Institucional UTBrepositorioutb@utb.edu.co