Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach

In this paper, an interconnection and damping assignment passivity-based control (IDA-PBC) theory is employed to obtain maximum power point tracking (MPPT) for a photovoltaic (PV) module. A current control mode is selected to obtain the general control law, which guarantees exponential stability of...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8878
Acceso en línea:
https://hdl.handle.net/20.500.12585/8878
Palabra clave:
Current control mode
Interconnection and damping assignment passivity based control (IDA PBC)
Lyapunov stability
Maximum power point tracking (MPPT)
Photovoltaic (PV) systems
Damping
DC-DC converters
Dynamical systems
Electric current control
Electric power system interconnection
MATLAB
Maximum power point trackers
Photovoltaic cells
Current control modes
Lyapunov stability
Maximum Power Point Tracking
Passivity based control
Photovoltaic systems
Control system stability
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_16614e8db295bb1438b952e4cf507b3d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8878
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
title Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
spellingShingle Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
Current control mode
Interconnection and damping assignment passivity based control (IDA PBC)
Lyapunov stability
Maximum power point tracking (MPPT)
Photovoltaic (PV) systems
Damping
DC-DC converters
Dynamical systems
Electric current control
Electric power system interconnection
MATLAB
Maximum power point trackers
Photovoltaic cells
Current control modes
Lyapunov stability
Maximum Power Point Tracking
Passivity based control
Photovoltaic systems
Control system stability
title_short Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
title_full Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
title_fullStr Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
title_full_unstemmed Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
title_sort Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
dc.subject.keywords.none.fl_str_mv Current control mode
Interconnection and damping assignment passivity based control (IDA PBC)
Lyapunov stability
Maximum power point tracking (MPPT)
Photovoltaic (PV) systems
Damping
DC-DC converters
Dynamical systems
Electric current control
Electric power system interconnection
MATLAB
Maximum power point trackers
Photovoltaic cells
Current control modes
Lyapunov stability
Maximum Power Point Tracking
Passivity based control
Photovoltaic systems
Control system stability
topic Current control mode
Interconnection and damping assignment passivity based control (IDA PBC)
Lyapunov stability
Maximum power point tracking (MPPT)
Photovoltaic (PV) systems
Damping
DC-DC converters
Dynamical systems
Electric current control
Electric power system interconnection
MATLAB
Maximum power point trackers
Photovoltaic cells
Current control modes
Lyapunov stability
Maximum Power Point Tracking
Passivity based control
Photovoltaic systems
Control system stability
description In this paper, an interconnection and damping assignment passivity-based control (IDA-PBC) theory is employed to obtain maximum power point tracking (MPPT) for a photovoltaic (PV) module. A current control mode is selected to obtain the general control law, which guarantees exponential stability of the system in the sense of Lyapunov. The current is selected as the objective of control in this paper, due to the variations of irradiance and temperature on the PV module to produce the most impact in the current provided by the panel in comparison with its voltage profile. A modification of the classical IDA-PBC theory is employed to control the dynamical system under trajectory tracking. Simulation results show the capacity of the proposed control to extract the maximum power from the PV module under high changes in the irradiance and temperature. All simulations are conducted in MATLAB/Simulink. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:33Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:33Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Green Technologies Conference; Vol. 2018-April, pp. 1-6
dc.identifier.isbn.none.fl_str_mv 9781538651834
dc.identifier.issn.none.fl_str_mv 21665478
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8878
dc.identifier.doi.none.fl_str_mv 10.1109/GreenTech.2018.00010
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57202647160
57198269531
57202648917
56207250200
55791991200
identifier_str_mv IEEE Green Technologies Conference; Vol. 2018-April, pp. 1-6
9781538651834
21665478
10.1109/GreenTech.2018.00010
Universidad Tecnológica de Bolívar
Repositorio UTB
57202647160
57198269531
57202648917
56207250200
55791991200
url https://hdl.handle.net/20.500.12585/8878
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 4 April 2018 through 6 April 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE Computer Society
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048971206&doi=10.1109%2fGreenTech.2018.00010&partnerID=40&md5=e1b55f6617bb5d763bf092ea559c5146
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 2018 IEEE Annual Green Technologies Conference, GreenTech 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8878/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021760867106816
spelling 2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018IEEE Green Technologies Conference; Vol. 2018-April, pp. 1-6978153865183421665478https://hdl.handle.net/20.500.12585/887810.1109/GreenTech.2018.00010Universidad Tecnológica de BolívarRepositorio UTB5720264716057198269531572026489175620725020055791991200In this paper, an interconnection and damping assignment passivity-based control (IDA-PBC) theory is employed to obtain maximum power point tracking (MPPT) for a photovoltaic (PV) module. A current control mode is selected to obtain the general control law, which guarantees exponential stability of the system in the sense of Lyapunov. The current is selected as the objective of control in this paper, due to the variations of irradiance and temperature on the PV module to produce the most impact in the current provided by the panel in comparison with its voltage profile. A modification of the classical IDA-PBC theory is employed to control the dynamical system under trajectory tracking. Simulation results show the capacity of the proposed control to extract the maximum power from the PV module under high changes in the irradiance and temperature. All simulations are conducted in MATLAB/Simulink. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727 2015 Department of Science, Information Technology and Innovation, Queensland GovernmentACKNOWLEDGMENTS The authors want to thanks to the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling 727 2015 and Ph.D program in Engineering of the TechnologicalUniversity of Pereira, and the Instituto Tec-nológico Metropolitano under the research project P-17211.Recurso electrónicoapplication/pdfengIEEE Computer Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048971206&doi=10.1109%2fGreenTech.2018.00010&partnerID=40&md5=e1b55f6617bb5d763bf092ea559c51462018 IEEE Annual Green Technologies Conference, GreenTech 2018Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCurrent control modeInterconnection and damping assignment passivity based control (IDA PBC)Lyapunov stabilityMaximum power point tracking (MPPT)Photovoltaic (PV) systemsDampingDC-DC convertersDynamical systemsElectric current controlElectric power system interconnectionMATLABMaximum power point trackersPhotovoltaic cellsCurrent control modesLyapunov stabilityMaximum Power Point TrackingPassivity based controlPhotovoltaic systemsControl system stability4 April 2018 through 6 April 2018Velazquez I.O.Perez G.R.E.Giraldo O.D.M.Ruiz A.G.Norena L.F.G.Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galván, E., Portillo-Guisado, R.C., Prats, M.M., León, J.I., Moreno-Alfonso, N., Power-electronic systems for the grid integration of renewable energy sources: A survey (2006) IEEE Transactions on Industrial Electronics, 53 (4), pp. 1002-1016Steimer, P.K., Enabled by high power electronics-energy efficiency, renewables and smart grids (2010) Power Electronics Conference (IPEC), 2010 International. IEEE, pp. 11-15Kouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging pv converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61Romero Cadaval, E., Francois, B., Malinowski, M., Zhong, Q.C., Grid-connected photovoltaic plants an alternative energy source, replacing conventional sources (2015) Industrial Electronics Magazine, 9Malinowski, M., Leon, J.I., Abu-Rub, H., Solar photovoltaic and thermal energy systems: Current technology and future trends (2017) Proceedings of the IEEE, PP (99), pp. 1-15Velzquez, O., I, Trejo D, E., Prez G, E., Control basado en pasividad para mppt en sistemas fotovoltaicos conectados a la red elctrica (2016) CLCAKakosimos, P.E., Kladas, A.G., Stefanos N, M., Fast photovoltaicsystem voltage-or current-oriented mppt employing a predictive digital current-controlled converter (2012) Transactions on Industrial Electronics, 60, p. 13. , DecemberEspinoza Trejo, D.R., Bárcenas Bárcenas, E., Campos Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaica systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), p. 9Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based mppt technique employing sliding mode control (2013) Transactions on Industrial Electronics, 60, p. 11. , MarchSchaft, A.V.D., L2-Gain and Passivity Techniques in Nonlinear Control, , SpringerGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95. , MarchRomdlony, M.Z., Jayawardhana, B., Passivity-based control with guaranteed safety via interconnection and damping assignment (2015) IFACPapersOnLine, 48 (27), pp. 74-79Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238. , MaySerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19Verma, D., Nema, S., Shandilya, A., Dash, S.K., Maximum power point tracking (mppt) techniques: Recapitulation in solar photovoltaic systems (2016) Renewable and Sustainable Energy Reviews, 54, pp. 1018-1034http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8878/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8878oai:repositorio.utb.edu.co:20.500.12585/88782021-02-02 14:29:05.768Repositorio Institucional UTBrepositorioutb@utb.edu.co