Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach
In this paper, an interconnection and damping assignment passivity-based control (IDA-PBC) theory is employed to obtain maximum power point tracking (MPPT) for a photovoltaic (PV) module. A current control mode is selected to obtain the general control law, which guarantees exponential stability of...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8878
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8878
- Palabra clave:
- Current control mode
Interconnection and damping assignment passivity based control (IDA PBC)
Lyapunov stability
Maximum power point tracking (MPPT)
Photovoltaic (PV) systems
Damping
DC-DC converters
Dynamical systems
Electric current control
Electric power system interconnection
MATLAB
Maximum power point trackers
Photovoltaic cells
Current control modes
Lyapunov stability
Maximum Power Point Tracking
Passivity based control
Photovoltaic systems
Control system stability
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_16614e8db295bb1438b952e4cf507b3d |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8878 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach |
title |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach |
spellingShingle |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach Current control mode Interconnection and damping assignment passivity based control (IDA PBC) Lyapunov stability Maximum power point tracking (MPPT) Photovoltaic (PV) systems Damping DC-DC converters Dynamical systems Electric current control Electric power system interconnection MATLAB Maximum power point trackers Photovoltaic cells Current control modes Lyapunov stability Maximum Power Point Tracking Passivity based control Photovoltaic systems Control system stability |
title_short |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach |
title_full |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach |
title_fullStr |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach |
title_full_unstemmed |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach |
title_sort |
Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach |
dc.subject.keywords.none.fl_str_mv |
Current control mode Interconnection and damping assignment passivity based control (IDA PBC) Lyapunov stability Maximum power point tracking (MPPT) Photovoltaic (PV) systems Damping DC-DC converters Dynamical systems Electric current control Electric power system interconnection MATLAB Maximum power point trackers Photovoltaic cells Current control modes Lyapunov stability Maximum Power Point Tracking Passivity based control Photovoltaic systems Control system stability |
topic |
Current control mode Interconnection and damping assignment passivity based control (IDA PBC) Lyapunov stability Maximum power point tracking (MPPT) Photovoltaic (PV) systems Damping DC-DC converters Dynamical systems Electric current control Electric power system interconnection MATLAB Maximum power point trackers Photovoltaic cells Current control modes Lyapunov stability Maximum Power Point Tracking Passivity based control Photovoltaic systems Control system stability |
description |
In this paper, an interconnection and damping assignment passivity-based control (IDA-PBC) theory is employed to obtain maximum power point tracking (MPPT) for a photovoltaic (PV) module. A current control mode is selected to obtain the general control law, which guarantees exponential stability of the system in the sense of Lyapunov. The current is selected as the objective of control in this paper, due to the variations of irradiance and temperature on the PV module to produce the most impact in the current provided by the panel in comparison with its voltage profile. A modification of the classical IDA-PBC theory is employed to control the dynamical system under trajectory tracking. Simulation results show the capacity of the proposed control to extract the maximum power from the PV module under high changes in the irradiance and temperature. All simulations are conducted in MATLAB/Simulink. © 2018 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
IEEE Green Technologies Conference; Vol. 2018-April, pp. 1-6 |
dc.identifier.isbn.none.fl_str_mv |
9781538651834 |
dc.identifier.issn.none.fl_str_mv |
21665478 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8878 |
dc.identifier.doi.none.fl_str_mv |
10.1109/GreenTech.2018.00010 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57202647160 57198269531 57202648917 56207250200 55791991200 |
identifier_str_mv |
IEEE Green Technologies Conference; Vol. 2018-April, pp. 1-6 9781538651834 21665478 10.1109/GreenTech.2018.00010 Universidad Tecnológica de Bolívar Repositorio UTB 57202647160 57198269531 57202648917 56207250200 55791991200 |
url |
https://hdl.handle.net/20.500.12585/8878 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
4 April 2018 through 6 April 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048971206&doi=10.1109%2fGreenTech.2018.00010&partnerID=40&md5=e1b55f6617bb5d763bf092ea559c5146 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
2018 IEEE Annual Green Technologies Conference, GreenTech 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8878/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021760867106816 |
spelling |
2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018IEEE Green Technologies Conference; Vol. 2018-April, pp. 1-6978153865183421665478https://hdl.handle.net/20.500.12585/887810.1109/GreenTech.2018.00010Universidad Tecnológica de BolívarRepositorio UTB5720264716057198269531572026489175620725020055791991200In this paper, an interconnection and damping assignment passivity-based control (IDA-PBC) theory is employed to obtain maximum power point tracking (MPPT) for a photovoltaic (PV) module. A current control mode is selected to obtain the general control law, which guarantees exponential stability of the system in the sense of Lyapunov. The current is selected as the objective of control in this paper, due to the variations of irradiance and temperature on the PV module to produce the most impact in the current provided by the panel in comparison with its voltage profile. A modification of the classical IDA-PBC theory is employed to control the dynamical system under trajectory tracking. Simulation results show the capacity of the proposed control to extract the maximum power from the PV module under high changes in the irradiance and temperature. All simulations are conducted in MATLAB/Simulink. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727 2015 Department of Science, Information Technology and Innovation, Queensland GovernmentACKNOWLEDGMENTS The authors want to thanks to the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling 727 2015 and Ph.D program in Engineering of the TechnologicalUniversity of Pereira, and the Instituto Tec-nológico Metropolitano under the research project P-17211.Recurso electrónicoapplication/pdfengIEEE Computer Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048971206&doi=10.1109%2fGreenTech.2018.00010&partnerID=40&md5=e1b55f6617bb5d763bf092ea559c51462018 IEEE Annual Green Technologies Conference, GreenTech 2018Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCurrent control modeInterconnection and damping assignment passivity based control (IDA PBC)Lyapunov stabilityMaximum power point tracking (MPPT)Photovoltaic (PV) systemsDampingDC-DC convertersDynamical systemsElectric current controlElectric power system interconnectionMATLABMaximum power point trackersPhotovoltaic cellsCurrent control modesLyapunov stabilityMaximum Power Point TrackingPassivity based controlPhotovoltaic systemsControl system stability4 April 2018 through 6 April 2018Velazquez I.O.Perez G.R.E.Giraldo O.D.M.Ruiz A.G.Norena L.F.G.Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galván, E., Portillo-Guisado, R.C., Prats, M.M., León, J.I., Moreno-Alfonso, N., Power-electronic systems for the grid integration of renewable energy sources: A survey (2006) IEEE Transactions on Industrial Electronics, 53 (4), pp. 1002-1016Steimer, P.K., Enabled by high power electronics-energy efficiency, renewables and smart grids (2010) Power Electronics Conference (IPEC), 2010 International. IEEE, pp. 11-15Kouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging pv converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61Romero Cadaval, E., Francois, B., Malinowski, M., Zhong, Q.C., Grid-connected photovoltaic plants an alternative energy source, replacing conventional sources (2015) Industrial Electronics Magazine, 9Malinowski, M., Leon, J.I., Abu-Rub, H., Solar photovoltaic and thermal energy systems: Current technology and future trends (2017) Proceedings of the IEEE, PP (99), pp. 1-15Velzquez, O., I, Trejo D, E., Prez G, E., Control basado en pasividad para mppt en sistemas fotovoltaicos conectados a la red elctrica (2016) CLCAKakosimos, P.E., Kladas, A.G., Stefanos N, M., Fast photovoltaicsystem voltage-or current-oriented mppt employing a predictive digital current-controlled converter (2012) Transactions on Industrial Electronics, 60, p. 13. , DecemberEspinoza Trejo, D.R., Bárcenas Bárcenas, E., Campos Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaica systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), p. 9Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based mppt technique employing sliding mode control (2013) Transactions on Industrial Electronics, 60, p. 11. , MarchSchaft, A.V.D., L2-Gain and Passivity Techniques in Nonlinear Control, , SpringerGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95. , MarchRomdlony, M.Z., Jayawardhana, B., Passivity-based control with guaranteed safety via interconnection and damping assignment (2015) IFACPapersOnLine, 48 (27), pp. 74-79Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238. , MaySerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19Verma, D., Nema, S., Shandilya, A., Dash, S.K., Maximum power point tracking (mppt) techniques: Recapitulation in solar photovoltaic systems (2016) Renewable and Sustainable Energy Reviews, 54, pp. 1018-1034http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8878/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8878oai:repositorio.utb.edu.co:20.500.12585/88782021-02-02 14:29:05.768Repositorio Institucional UTBrepositorioutb@utb.edu.co |