Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
Accurate 3D imaging of human skin features with structured light methods is hindered by subsurface scattering, the presence of hairs and patient movement. In this work, we propose a wide-field 3D imaging system capable of reconstructing large areas, e.g. the whole surface of the forearm, with an axi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9179
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9179
- Palabra clave:
- 3D imaging
Fourier transform profilometry
Fringe projection
Medical imaging
Skin metrology
Structured light
Contour measurement
Fourier transforms
Image reconstruction
Imaging systems
Light emitting diodes
Profilometry
Surface scattering
3D imaging
Feature measurement
Fourier transform profilometry
Fringe projection
Global coordinate systems
Grating projection
Structured Light
Subsurface scattering
Medical imaging
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_14d27d888d0e09d5cf4e573634b468f8 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9179 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry |
title |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry |
spellingShingle |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry 3D imaging Fourier transform profilometry Fringe projection Medical imaging Skin metrology Structured light Contour measurement Fourier transforms Image reconstruction Imaging systems Light emitting diodes Profilometry Surface scattering 3D imaging Feature measurement Fourier transform profilometry Fringe projection Global coordinate systems Grating projection Structured Light Subsurface scattering Medical imaging |
title_short |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry |
title_full |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry |
title_fullStr |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry |
title_full_unstemmed |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry |
title_sort |
Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry |
dc.contributor.editor.none.fl_str_mv |
Harding K.G. Zhang, Song |
dc.subject.keywords.none.fl_str_mv |
3D imaging Fourier transform profilometry Fringe projection Medical imaging Skin metrology Structured light Contour measurement Fourier transforms Image reconstruction Imaging systems Light emitting diodes Profilometry Surface scattering 3D imaging Feature measurement Fourier transform profilometry Fringe projection Global coordinate systems Grating projection Structured Light Subsurface scattering Medical imaging |
topic |
3D imaging Fourier transform profilometry Fringe projection Medical imaging Skin metrology Structured light Contour measurement Fourier transforms Image reconstruction Imaging systems Light emitting diodes Profilometry Surface scattering 3D imaging Feature measurement Fourier transform profilometry Fringe projection Global coordinate systems Grating projection Structured Light Subsurface scattering Medical imaging |
description |
Accurate 3D imaging of human skin features with structured light methods is hindered by subsurface scattering, the presence of hairs and patient movement. In this work, we propose a wide-field 3D imaging system capable of reconstructing large areas, e.g. the whole surface of the forearm, with an axial accuracy in the order of 10 microns for measuring scattered skin features, like lesions. By pushing the limits of grating projection we obtain high-quality fringes within a limited depth of field. We use a second projector for accurate positioning of the object. With two or more cameras we achieve independent 3D reconstructions automatically merged in a global coordinate system. With the positioning strategy, we acquire two consecutive images for absolute phase retrieval using Fourier Transform Profilometry to ensure accurate phase-to-height mapping. Encouraging experimental results show that the system is able to measure precisely skin features scattered in a large area. Copyright © 2019 SPIE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:08Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:08Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991 |
dc.identifier.isbn.none.fl_str_mv |
9781510626478 |
dc.identifier.issn.none.fl_str_mv |
0277786X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9179 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2518649 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
24329839300 36142156300 7004348301 |
identifier_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991 9781510626478 0277786X 10.1117/12.2518649 Universidad Tecnológica de Bolívar Repositorio UTB 24329839300 36142156300 7004348301 |
url |
https://hdl.handle.net/20.500.12585/9179 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
16 April 2019 through 17 April 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072556655&doi=10.1117%2f12.2518649&partnerID=40&md5=19ea4262ce9031a72dca64ee179a8509 Scopus2-s2.0-85072556655 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9179/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021604530716672 |
spelling |
Harding K.G.Zhang, SongMarrugo A.G.Romero L.A.Meneses J.2020-03-26T16:33:08Z2020-03-26T16:33:08Z2019Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1099197815106264780277786Xhttps://hdl.handle.net/20.500.12585/917910.1117/12.2518649Universidad Tecnológica de BolívarRepositorio UTB24329839300361421563007004348301Accurate 3D imaging of human skin features with structured light methods is hindered by subsurface scattering, the presence of hairs and patient movement. In this work, we propose a wide-field 3D imaging system capable of reconstructing large areas, e.g. the whole surface of the forearm, with an axial accuracy in the order of 10 microns for measuring scattered skin features, like lesions. By pushing the limits of grating projection we obtain high-quality fringes within a limited depth of field. We use a second projector for accurate positioning of the object. With two or more cameras we achieve independent 3D reconstructions automatically merged in a global coordinate system. With the positioning strategy, we acquire two consecutive images for absolute phase retrieval using Fourier Transform Profilometry to ensure accurate phase-to-height mapping. Encouraging experimental results show that the system is able to measure precisely skin features scattered in a large area. Copyright © 2019 SPIE.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485The Society of Photo-Optical Instrumentation Engineers (SPIE)This work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. The authors thank R. Vargas and J. Pineda for their technical assistance.Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072556655&doi=10.1117%2f12.2518649&partnerID=40&md5=19ea4262ce9031a72dca64ee179a8509Scopus2-s2.0-85072556655Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometryinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94f3D imagingFourier transform profilometryFringe projectionMedical imagingSkin metrologyStructured lightContour measurementFourier transformsImage reconstructionImaging systemsLight emitting diodesProfilometrySurface scattering3D imagingFeature measurementFourier transform profilometryFringe projectionGlobal coordinate systemsGrating projectionStructured LightSubsurface scatteringMedical imaging16 April 2019 through 17 April 2019Rodríguez-Quiñonez, J.C., Sergiyenko, O.Y., Preciado, L.C.B., Tyrsa, V.V., Gurko, A.G., Podrygalo, M.A., Lopez, M.R., Balbuena, D.H., Optical monitoring of scoliosis by 3D medical laser scanner (2014) Optics and Lasers in Engineering, 54, pp. 175-186Novak, B., Babnik, A., Možina, J., Jezeršek, M., Three-dimensional foot scanning system with a rotational laser-based measuring head (2014) Strojniški Vestnik - Journal of Mechanical Engineering, 60 (11), pp. 685-693Casas, L., Treuillet, S., Valencia, B., Llanos, A., Castañeda, B., Low-cost uncalibrated video-based tool for tridimensional reconstruction oriented to assessment of chronic wounds (2015) Tenth International Symposium on Medical Information Processing and Analysis, pp. 928711-928718. , Romero, E. and Lepore, N., eds., SPIEBleve, M., Capra, P., Pavanetto, F., Perugini, P., Ultrasound and 3D skin imaging: Methods to evaluate efficacy of striae distensae treatment (2012) Dermatology Research and Practice, 2012 (7), pp. 673706-673710Quang, T.T., Kim, H.-Y., Bao, F.S., Papay, F.A., Edwards, W.B., Liu, Y., Fluorescence imaging topography scanning system for intraoperative multimodal imaging (2017) PLoS ONE, 12 (4)Rosén, B.-G., Blunt, L., Thomas, T.R., On in-vivo skin topography metrology and replication techniques (2005) Journal of Physics: Conference Series, 13, pp. 325-329Ares, M., Royo, S., Vilaseca, M., Herrera, J.A., Delpueyo, X., Sanabria, F., Handheld 3D scanning system for In-vivo imaging of skin cancer (2014) 5th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 21-22 October 2014, pp. 231-236. , Hometrica Consulting - Dr. Nicola D'Apuzzo, Ascona, SwitzerlandKottner, J., Schario, M., Garcia Bartels, N., Pantchechnikova, E., Hillmann, K., Blume-Peytavi, U., Comparison of two in vivo measurements for skin surface topography (2013) Skin Research and Technology, 19 (2), pp. 84-90Li, B., Zhang, S., Microscopic structured light 3D profilometry: Binary defocusing technique vs. sinusoidal fringe projection (2017) Optics and Lasers in Engineering, 96, pp. 117-123Jiang, C., Lim, B., Zhang, S., Three-dimensional shape measurement using a structured light system with dual projectors (2018) Applied Optics, 57 (14), pp. 3983-3988Guo, X., Zhao, H., Jia, P., Li, K., Multiview fringe matching profilometry in a projector-camera system (2018) Optics Letters, 43 (15), pp. 3618-3621Jiang, C., Zhang, S., Absolute phase unwrapping for dual-camera system without embedding statistical features (2017) Optical Engineering, 56 (9), p. 094114Ebert, L.C., Flach, P., Schweitzer, W., Leipner, A., Kottner, S., Gascho, D., Thali, M.J., Breitbeck, R., Forensic 3D surface documentation at the institute of forensic medicine in zurich - workow and communication pipeline (2016) Journal of Forensic Radiology and Imaging, 5, pp. 1-7Takeda, M., Mutoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes (1983) Applied Optics, 22 (24), p. 3977Zhang, S., High-speed 3D shape measurement with structured light methods: A review (2018) Optics and Lasers in Engineering, 106, pp. 119-131Marrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., Fourier transform profilometry in labview (2018) Digital Systems, , Intech OpenMalacara, D., (2007) Optical Shop Testing, 59. , John Wiley & SonsZhang, S., Absolute phase retrieval methods for digital fringe projection profilometry: A review (2018) Optics and Lasers in Engineering, 107, pp. 28-37Goldstein, R.M., Zebker, H.A., Werner, C.L., Satellite radar interferometry: Two-dimensional phase unwrapping (1988) Radio Science, 23 (4), pp. 713-720Ghiglia, D.C., Pritt, M.D., (1998) Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, 4. , Wiley New YorkHarding, K., (2013) Handbook of Optical Dimensional Metrology, , CRC PressZhao, W., Su, X., Chen, W., Discussion on accurate phase-height mapping in fringe projection profilometry (2018) Optical Engineering, 56 (10), pp. 1-12Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3), pp. 1-10Busca, G., Zappa, E., Sensitivity analysis applied to an improved fourier-transform profilometry (2011) Optics and Lasers in Engineering, 49 (2), pp. 210-221Justo, X., Díaz, I., Gil, J.J., Gastaminza, G., Prick test: Evolution towards automated reading (2016) Allergy, 71 (8), pp. 1095-1102http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9179/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9179oai:repositorio.utb.edu.co:20.500.12585/91792023-04-24 08:39:56.754Repositorio Institucional UTBrepositorioutb@utb.edu.co |