Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry

Accurate 3D imaging of human skin features with structured light methods is hindered by subsurface scattering, the presence of hairs and patient movement. In this work, we propose a wide-field 3D imaging system capable of reconstructing large areas, e.g. the whole surface of the forearm, with an axi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9179
Acceso en línea:
https://hdl.handle.net/20.500.12585/9179
Palabra clave:
3D imaging
Fourier transform profilometry
Fringe projection
Medical imaging
Skin metrology
Structured light
Contour measurement
Fourier transforms
Image reconstruction
Imaging systems
Light emitting diodes
Profilometry
Surface scattering
3D imaging
Feature measurement
Fourier transform profilometry
Fringe projection
Global coordinate systems
Grating projection
Structured Light
Subsurface scattering
Medical imaging
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_14d27d888d0e09d5cf4e573634b468f8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9179
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
title Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
spellingShingle Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
3D imaging
Fourier transform profilometry
Fringe projection
Medical imaging
Skin metrology
Structured light
Contour measurement
Fourier transforms
Image reconstruction
Imaging systems
Light emitting diodes
Profilometry
Surface scattering
3D imaging
Feature measurement
Fourier transform profilometry
Fringe projection
Global coordinate systems
Grating projection
Structured Light
Subsurface scattering
Medical imaging
title_short Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
title_full Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
title_fullStr Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
title_full_unstemmed Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
title_sort Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
dc.contributor.editor.none.fl_str_mv Harding K.G.
Zhang, Song
dc.subject.keywords.none.fl_str_mv 3D imaging
Fourier transform profilometry
Fringe projection
Medical imaging
Skin metrology
Structured light
Contour measurement
Fourier transforms
Image reconstruction
Imaging systems
Light emitting diodes
Profilometry
Surface scattering
3D imaging
Feature measurement
Fourier transform profilometry
Fringe projection
Global coordinate systems
Grating projection
Structured Light
Subsurface scattering
Medical imaging
topic 3D imaging
Fourier transform profilometry
Fringe projection
Medical imaging
Skin metrology
Structured light
Contour measurement
Fourier transforms
Image reconstruction
Imaging systems
Light emitting diodes
Profilometry
Surface scattering
3D imaging
Feature measurement
Fourier transform profilometry
Fringe projection
Global coordinate systems
Grating projection
Structured Light
Subsurface scattering
Medical imaging
description Accurate 3D imaging of human skin features with structured light methods is hindered by subsurface scattering, the presence of hairs and patient movement. In this work, we propose a wide-field 3D imaging system capable of reconstructing large areas, e.g. the whole surface of the forearm, with an axial accuracy in the order of 10 microns for measuring scattered skin features, like lesions. By pushing the limits of grating projection we obtain high-quality fringes within a limited depth of field. We use a second projector for accurate positioning of the object. With two or more cameras we achieve independent 3D reconstructions automatically merged in a global coordinate system. With the positioning strategy, we acquire two consecutive images for absolute phase retrieval using Fourier Transform Profilometry to ensure accurate phase-to-height mapping. Encouraging experimental results show that the system is able to measure precisely skin features scattered in a large area. Copyright © 2019 SPIE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:08Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:08Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991
dc.identifier.isbn.none.fl_str_mv 9781510626478
dc.identifier.issn.none.fl_str_mv 0277786X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9179
dc.identifier.doi.none.fl_str_mv 10.1117/12.2518649
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24329839300
36142156300
7004348301
identifier_str_mv Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10991
9781510626478
0277786X
10.1117/12.2518649
Universidad Tecnológica de Bolívar
Repositorio UTB
24329839300
36142156300
7004348301
url https://hdl.handle.net/20.500.12585/9179
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 16 April 2019 through 17 April 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SPIE
publisher.none.fl_str_mv SPIE
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072556655&doi=10.1117%2f12.2518649&partnerID=40&md5=19ea4262ce9031a72dca64ee179a8509
Scopus2-s2.0-85072556655
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9179/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021604530716672
spelling Harding K.G.Zhang, SongMarrugo A.G.Romero L.A.Meneses J.2020-03-26T16:33:08Z2020-03-26T16:33:08Z2019Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1099197815106264780277786Xhttps://hdl.handle.net/20.500.12585/917910.1117/12.2518649Universidad Tecnológica de BolívarRepositorio UTB24329839300361421563007004348301Accurate 3D imaging of human skin features with structured light methods is hindered by subsurface scattering, the presence of hairs and patient movement. In this work, we propose a wide-field 3D imaging system capable of reconstructing large areas, e.g. the whole surface of the forearm, with an axial accuracy in the order of 10 microns for measuring scattered skin features, like lesions. By pushing the limits of grating projection we obtain high-quality fringes within a limited depth of field. We use a second projector for accurate positioning of the object. With two or more cameras we achieve independent 3D reconstructions automatically merged in a global coordinate system. With the positioning strategy, we acquire two consecutive images for absolute phase retrieval using Fourier Transform Profilometry to ensure accurate phase-to-height mapping. Encouraging experimental results show that the system is able to measure precisely skin features scattered in a large area. Copyright © 2019 SPIE.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485The Society of Photo-Optical Instrumentation Engineers (SPIE)This work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. The authors thank R. Vargas and J. Pineda for their technical assistance.Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072556655&doi=10.1117%2f12.2518649&partnerID=40&md5=19ea4262ce9031a72dca64ee179a8509Scopus2-s2.0-85072556655Dimensional Optical Metrology and Inspection for Practical Applications VIII 2019Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometryinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94f3D imagingFourier transform profilometryFringe projectionMedical imagingSkin metrologyStructured lightContour measurementFourier transformsImage reconstructionImaging systemsLight emitting diodesProfilometrySurface scattering3D imagingFeature measurementFourier transform profilometryFringe projectionGlobal coordinate systemsGrating projectionStructured LightSubsurface scatteringMedical imaging16 April 2019 through 17 April 2019Rodríguez-Quiñonez, J.C., Sergiyenko, O.Y., Preciado, L.C.B., Tyrsa, V.V., Gurko, A.G., Podrygalo, M.A., Lopez, M.R., Balbuena, D.H., Optical monitoring of scoliosis by 3D medical laser scanner (2014) Optics and Lasers in Engineering, 54, pp. 175-186Novak, B., Babnik, A., Možina, J., Jezeršek, M., Three-dimensional foot scanning system with a rotational laser-based measuring head (2014) Strojniški Vestnik - Journal of Mechanical Engineering, 60 (11), pp. 685-693Casas, L., Treuillet, S., Valencia, B., Llanos, A., Castañeda, B., Low-cost uncalibrated video-based tool for tridimensional reconstruction oriented to assessment of chronic wounds (2015) Tenth International Symposium on Medical Information Processing and Analysis, pp. 928711-928718. , Romero, E. and Lepore, N., eds., SPIEBleve, M., Capra, P., Pavanetto, F., Perugini, P., Ultrasound and 3D skin imaging: Methods to evaluate efficacy of striae distensae treatment (2012) Dermatology Research and Practice, 2012 (7), pp. 673706-673710Quang, T.T., Kim, H.-Y., Bao, F.S., Papay, F.A., Edwards, W.B., Liu, Y., Fluorescence imaging topography scanning system for intraoperative multimodal imaging (2017) PLoS ONE, 12 (4)Rosén, B.-G., Blunt, L., Thomas, T.R., On in-vivo skin topography metrology and replication techniques (2005) Journal of Physics: Conference Series, 13, pp. 325-329Ares, M., Royo, S., Vilaseca, M., Herrera, J.A., Delpueyo, X., Sanabria, F., Handheld 3D scanning system for In-vivo imaging of skin cancer (2014) 5th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 21-22 October 2014, pp. 231-236. , Hometrica Consulting - Dr. Nicola D'Apuzzo, Ascona, SwitzerlandKottner, J., Schario, M., Garcia Bartels, N., Pantchechnikova, E., Hillmann, K., Blume-Peytavi, U., Comparison of two in vivo measurements for skin surface topography (2013) Skin Research and Technology, 19 (2), pp. 84-90Li, B., Zhang, S., Microscopic structured light 3D profilometry: Binary defocusing technique vs. sinusoidal fringe projection (2017) Optics and Lasers in Engineering, 96, pp. 117-123Jiang, C., Lim, B., Zhang, S., Three-dimensional shape measurement using a structured light system with dual projectors (2018) Applied Optics, 57 (14), pp. 3983-3988Guo, X., Zhao, H., Jia, P., Li, K., Multiview fringe matching profilometry in a projector-camera system (2018) Optics Letters, 43 (15), pp. 3618-3621Jiang, C., Zhang, S., Absolute phase unwrapping for dual-camera system without embedding statistical features (2017) Optical Engineering, 56 (9), p. 094114Ebert, L.C., Flach, P., Schweitzer, W., Leipner, A., Kottner, S., Gascho, D., Thali, M.J., Breitbeck, R., Forensic 3D surface documentation at the institute of forensic medicine in zurich - workow and communication pipeline (2016) Journal of Forensic Radiology and Imaging, 5, pp. 1-7Takeda, M., Mutoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes (1983) Applied Optics, 22 (24), p. 3977Zhang, S., High-speed 3D shape measurement with structured light methods: A review (2018) Optics and Lasers in Engineering, 106, pp. 119-131Marrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., Fourier transform profilometry in labview (2018) Digital Systems, , Intech OpenMalacara, D., (2007) Optical Shop Testing, 59. , John Wiley & SonsZhang, S., Absolute phase retrieval methods for digital fringe projection profilometry: A review (2018) Optics and Lasers in Engineering, 107, pp. 28-37Goldstein, R.M., Zebker, H.A., Werner, C.L., Satellite radar interferometry: Two-dimensional phase unwrapping (1988) Radio Science, 23 (4), pp. 713-720Ghiglia, D.C., Pritt, M.D., (1998) Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, 4. , Wiley New YorkHarding, K., (2013) Handbook of Optical Dimensional Metrology, , CRC PressZhao, W., Su, X., Chen, W., Discussion on accurate phase-height mapping in fringe projection profilometry (2018) Optical Engineering, 56 (10), pp. 1-12Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3), pp. 1-10Busca, G., Zappa, E., Sensitivity analysis applied to an improved fourier-transform profilometry (2011) Optics and Lasers in Engineering, 49 (2), pp. 210-221Justo, X., Díaz, I., Gil, J.J., Gastaminza, G., Prick test: Evolution towards automated reading (2016) Allergy, 71 (8), pp. 1095-1102http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9179/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9179oai:repositorio.utb.edu.co:20.500.12585/91792023-04-24 08:39:56.754Repositorio Institucional UTBrepositorioutb@utb.edu.co