Boundary element analysis of laminated composite shear deformable shallow shells

In this work, a Boundary Element Method formulation for stress analysis of symmetrically laminated composite thick shallow shells is presented. The proposed formulation was obtained by coupling the boundary element formulation of shear deformable symmetrically laminated composite plates and the boun...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8868
Acceso en línea:
https://hdl.handle.net/20.500.12585/8868
Palabra clave:
Boundary element method
Composite shells
Laminated shells
Radial integration method
Shear deformable shells
Stress analysis
Anisotropy
Laminated composites
Laminating
Sailing vessels
Shear deformation
Shells (structures)
Stress analysis
Boundary element analysis
Boundary element formulations
Composite shell
Fundamental solutions
Laminated composite plates
Laminated shell
Radial integration method
Shear deformable shells
Boundary element method
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_14760699503c7f039bc52caba713ca03
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8868
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Boundary element analysis of laminated composite shear deformable shallow shells
title Boundary element analysis of laminated composite shear deformable shallow shells
spellingShingle Boundary element analysis of laminated composite shear deformable shallow shells
Boundary element method
Composite shells
Laminated shells
Radial integration method
Shear deformable shells
Stress analysis
Anisotropy
Laminated composites
Laminating
Sailing vessels
Shear deformation
Shells (structures)
Stress analysis
Boundary element analysis
Boundary element formulations
Composite shell
Fundamental solutions
Laminated composite plates
Laminated shell
Radial integration method
Shear deformable shells
Boundary element method
title_short Boundary element analysis of laminated composite shear deformable shallow shells
title_full Boundary element analysis of laminated composite shear deformable shallow shells
title_fullStr Boundary element analysis of laminated composite shear deformable shallow shells
title_full_unstemmed Boundary element analysis of laminated composite shear deformable shallow shells
title_sort Boundary element analysis of laminated composite shear deformable shallow shells
dc.subject.keywords.none.fl_str_mv Boundary element method
Composite shells
Laminated shells
Radial integration method
Shear deformable shells
Stress analysis
Anisotropy
Laminated composites
Laminating
Sailing vessels
Shear deformation
Shells (structures)
Stress analysis
Boundary element analysis
Boundary element formulations
Composite shell
Fundamental solutions
Laminated composite plates
Laminated shell
Radial integration method
Shear deformable shells
Boundary element method
topic Boundary element method
Composite shells
Laminated shells
Radial integration method
Shear deformable shells
Stress analysis
Anisotropy
Laminated composites
Laminating
Sailing vessels
Shear deformation
Shells (structures)
Stress analysis
Boundary element analysis
Boundary element formulations
Composite shell
Fundamental solutions
Laminated composite plates
Laminated shell
Radial integration method
Shear deformable shells
Boundary element method
description In this work, a Boundary Element Method formulation for stress analysis of symmetrically laminated composite thick shallow shells is presented. The proposed formulation was obtained by coupling the boundary element formulation of shear deformable symmetrically laminated composite plates and the boundary element formulation for two-dimensional anisotropic plane stress analysis. Formulation uses the elastostatic anisotropic fundamental solutions proposed for these formulations. Domain integrals are transformed to the boundary by using the Radial Integration Method. Numerical examples are presented to demonstrate the efficiency and accuracy of the formulation. Obtained results concur with results available in the literature as well as with finite element results. © 2018 Elsevier Ltd
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:32Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:32Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Composite Structures; Vol. 199, pp. 24-37
dc.identifier.issn.none.fl_str_mv 02638223
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8868
dc.identifier.doi.none.fl_str_mv 10.1016/j.compstruct.2018.05.044
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24537991200
57202660842
identifier_str_mv Composite Structures; Vol. 199, pp. 24-37
02638223
10.1016/j.compstruct.2018.05.044
Universidad Tecnológica de Bolívar
Repositorio UTB
24537991200
57202660842
url https://hdl.handle.net/20.500.12585/8868
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047209627&doi=10.1016%2fj.compstruct.2018.05.044&partnerID=40&md5=d1de27f71263191ce3a1eb1a81256eba
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8868/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021807357820928
spelling 2020-03-26T16:32:32Z2020-03-26T16:32:32Z2018Composite Structures; Vol. 199, pp. 24-3702638223https://hdl.handle.net/20.500.12585/886810.1016/j.compstruct.2018.05.044Universidad Tecnológica de BolívarRepositorio UTB2453799120057202660842In this work, a Boundary Element Method formulation for stress analysis of symmetrically laminated composite thick shallow shells is presented. The proposed formulation was obtained by coupling the boundary element formulation of shear deformable symmetrically laminated composite plates and the boundary element formulation for two-dimensional anisotropic plane stress analysis. Formulation uses the elastostatic anisotropic fundamental solutions proposed for these formulations. Domain integrals are transformed to the boundary by using the Radial Integration Method. Numerical examples are presented to demonstrate the efficiency and accuracy of the formulation. Obtained results concur with results available in the literature as well as with finite element results. © 2018 Elsevier LtdThe author is grateful to the Research Office of Universidad Tecnológica de Bolívar for supporting this research work on laminated shear deformable shallow shells. Appendix ARecurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85047209627&doi=10.1016%2fj.compstruct.2018.05.044&partnerID=40&md5=d1de27f71263191ce3a1eb1a81256ebaBoundary element analysis of laminated composite shear deformable shallow shellsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Boundary element methodComposite shellsLaminated shellsRadial integration methodShear deformable shellsStress analysisAnisotropyLaminated compositesLaminatingSailing vesselsShear deformationShells (structures)Stress analysisBoundary element analysisBoundary element formulationsComposite shellFundamental solutionsLaminated composite platesLaminated shellRadial integration methodShear deformable shellsBoundary element methodUseche Vivero, JairoMedina C.Albuquerque, E.L., Sollero, P., Aliabadi, M.H., The boundary element method applied to time dependent problems in anisotropic materials (2002) Int J Solids Struct, 39 (5), pp. 1405-1422Albuquerque, E.L., Aliabadi, M.H., A boundary element formulation for boundary only analysis of thin shallow shells (2008) CMES – Comput Model Eng Sci, 29, pp. 63-73Albuquerque, E.L., Sollero, P., Venturini, W., Aliabadi, M.H., Boundary element analysis of anisotropic kirchhoff plates (2006) Int J Solids Struct, 43, pp. 4029-4046Caliri, M.F., Jr., Ferreira, J.M., Tita, V., A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method (2016) Compos Struct, 156, pp. 63-77Deb, A., Banerjee, P.K., BEM for general anisotropic 2D elasticity using particular integrals (1990) Commun Appl Numer Method, 6, pp. 111-119Dinis, L.M.J.S., Natal Jorge, R.M., Belinha, J., A natural neighbour meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures (2011) Thin-Walled Struct, 49 (1), pp. 185-196Fazzolari, F.A., Carrera, E., Advances in the Ritz formulation for free vibration response of doubly-curved anisotropic laminated composite shallow and deep shells (2013) Compos Struct, 101, pp. 111-128Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N., Static and free vibration analysis of composite shells by radial basis functions. newblock (2006) Eng Anal Boundary Elem, 30 (9), pp. 719-733Gao, X.-W., The radial integration method for evaluation of domain integrals with boundary-only discretization (2002) Eng Anal Boundary Elem, 26 (10), pp. 905-916Krysl, P., Belytschko, T., Analysis of thin shells by the element-free Galerkin method (1996) Int J Solids Struct, 33 (20-22), pp. 3057-3080Mantari, J.L., Oktem, A.K., Guedes, C., Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory (2011) Compos Struct, 94 (1), pp. 37-49Pereira, W.L.A., Karam, V.J., Carrer, J.A.M., Mansur, W.J., A dynamic formulation for the analysis of thick elastic plates by the boundary element method (2012) Eng Anal Boundary Elem, 36 (7), pp. 1138-1150Providakis, C.P., Beskos, D.E., Dynamic analysis of plates by boundary elements (1999) Appl Mech Rev, 52 (7), pp. 213-236Reddy, J.N., Mechanics of laminated composite plates and shells: theory and analysis (2004), 2 ed CRC Press New YorkSladek, J., Sladek, V., Wen, P., Aliabadi, M.H., Meshless Local Petrov-Galerkin (MLPG) method for shear deformable shells analysis (2006) Comput Model Eng Sci, 13 (2), pp. 533-538Tenek, L.T., Argyris, J., Finite element analysis for composite structures (1998), 1st ed. SpringerTelles, J.C.F., A self-adaptive coordinate transformation for efficient numerical evaluations of general boundary element integrals (1987) Int J Numer Meth Eng, 24, pp. 959-973Useche, J., Albuquerque, E.L., Transient dynamic analysis of shear deformable shallow shells using the boundary element method (2015) Eng Struct J, 87, pp. 1-7Useche, J., Albuquerque, E.L., Sollero, P., Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method (2012) Eng Anal Boundary Elem, 36 (11), pp. 1528-1535Useche, J., Harnish, C., A boundary element method formulation for modal analysis of doubly curved thick shallow shells (2016) Appl Math Model, 40 (5-6), pp. 3591-3600Useche, J., Alvarez, H., Elastodynamic analysis of thick multilayer composite plates by the boundary element method (2015) Comput Model Eng Sci, 107 (4), pp. 277-296Reis, A., Albuquerque, E.L., Santana, A.P., Useche, J., Computation of moments in orthotropic thick plates by the Boundary Element Method (2012) 10th-World Congress on Computational Mechanics, July 2012, São Paulo, BrasilYasin, M.Y., Kapuria, S., An efficient layerwise finite element for shallow composite and sandwich shells (2013) Compos Struct, 98, pp. 202-214Wen, P.H., Aliabadi, M.H., Young, A., Plane stress and plate bending coupling in BEM analysis of shallow shells (2000) Int J Numer Methods Eng, 48, pp. 1107-1125Wang, J., Schweizerhof, K., The fundamental solutions of moderately thick laminated anisotropic shallow shells (1995) Int J Eng Sci, 33 (7), pp. 995-1004Wang, J., Schweizerhof, K., Computation of fundamental solutions for laminated anisotropic shallow shells (1995) Mech Res Commun, 22 (4), pp. 393-400Wang, J., Schweizerhof, K., Fundamental solutions and boundary integrals equations of moderately thick symmetrically laminated anisotropic plates (1996) Commun Numer Methods Eng, 12, pp. 383-394Wang, J., Schweizerhof, K., Free vibration of laminated anisotropic shallow shells including transverse shear deformation by the boundary-domain element method (1997) Comput Struct, 62 (1), pp. 151-156Wen, P.H., Aliabadi, M.H., Analysis of functionally graded plates by meshless method: a purely analytical formulation (2012) Eng Anal Boundary Elem, 36 (5), pp. 639-650Wrobel, L.C., Aliabadi, M.H., The boundary element method volume 2: applications in solid and structures (2002), Wiley New YorkXia, P., Long, S., Cui, H., Elastic dynamic analysis of moderately thick plate using meshless LRPIM (2009) Acta Mechanica Solida Sinica, 22 (2), pp. 116-124Zhang, Y.X., Yang, C.H., Recent developments in finite element analysis for laminated composite plates (2009) Compos Struct, 88 (1), pp. 147-157http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8868/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8868oai:repositorio.utb.edu.co:20.500.12585/88682023-04-24 09:18:35.521Repositorio Institucional UTBrepositorioutb@utb.edu.co