An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation

We develop a reliable residual-based a posteriori error estimator for a nonconforming method with non-matching meshes for a harmonic elastodynamics equation and show that the approximation method converges with an optimal order to the exact solution. Moreover, we propose an adaptive strategy to redu...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8883
Acceso en línea:
https://hdl.handle.net/20.500.12585/8883
Palabra clave:
A posteriori error estimator
Adaptive method
Domain decomposition method
Harmonic elastodinamics equation
Nitsche method
Non-matching mesh
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_14312cad8dd11f430c1d98c09ce8180a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8883
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
title An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
spellingShingle An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
A posteriori error estimator
Adaptive method
Domain decomposition method
Harmonic elastodinamics equation
Nitsche method
Non-matching mesh
title_short An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
title_full An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
title_fullStr An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
title_full_unstemmed An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
title_sort An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation
dc.subject.keywords.none.fl_str_mv A posteriori error estimator
Adaptive method
Domain decomposition method
Harmonic elastodinamics equation
Nitsche method
Non-matching mesh
topic A posteriori error estimator
Adaptive method
Domain decomposition method
Harmonic elastodinamics equation
Nitsche method
Non-matching mesh
description We develop a reliable residual-based a posteriori error estimator for a nonconforming method with non-matching meshes for a harmonic elastodynamics equation and show that the approximation method converges with an optimal order to the exact solution. Moreover, we propose an adaptive strategy to reduce computational cost and derive better approximations for problems with singularities and with large approximating systems. Numerical experiments confirm theoretical conclusions. © 2018 Global-Science Press.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:33Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:33Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv East Asian Journal on Applied Mathematics; Vol. 8, Núm. 2; pp. 365-384
dc.identifier.issn.none.fl_str_mv 20797362
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8883
dc.identifier.doi.none.fl_str_mv 10.4208/eajam.100317.020318a
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 45860981700
57212114514
57212113860
identifier_str_mv East Asian Journal on Applied Mathematics; Vol. 8, Núm. 2; pp. 365-384
20797362
10.4208/eajam.100317.020318a
Universidad Tecnológica de Bolívar
Repositorio UTB
45860981700
57212114514
57212113860
url https://hdl.handle.net/20.500.12585/8883
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Global Science Press
publisher.none.fl_str_mv Global Science Press
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075962929&doi=10.4208%2feajam.100317.020318a&partnerID=40&md5=b6f0d94ec48e97dc7b5d668c155b47ab
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8883/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021741787217920
spelling 2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018East Asian Journal on Applied Mathematics; Vol. 8, Núm. 2; pp. 365-38420797362https://hdl.handle.net/20.500.12585/888310.4208/eajam.100317.020318aUniversidad Tecnológica de BolívarRepositorio UTB458609817005721211451457212113860We develop a reliable residual-based a posteriori error estimator for a nonconforming method with non-matching meshes for a harmonic elastodynamics equation and show that the approximation method converges with an optimal order to the exact solution. Moreover, we propose an adaptive strategy to reduce computational cost and derive better approximations for problems with singularities and with large approximating systems. Numerical experiments confirm theoretical conclusions. © 2018 Global-Science Press.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 121565842348, 048-2015 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASThis research work was supported by Colciencias (Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia) under the project 121565842348 (Contract No. 048-2015). We thank the anonymous reviewers for careful reading of the manuscript and their encouraging comments and suggestions.Recurso electrónicoapplication/pdfengGlobal Science Presshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075962929&doi=10.4208%2feajam.100317.020318a&partnerID=40&md5=b6f0d94ec48e97dc7b5d668c155b47abAn a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1A posteriori error estimatorAdaptive methodDomain decomposition methodHarmonic elastodinamics equationNitsche methodNon-matching meshDomínguez C.Torres R.González H.Arnold, D.N., An interior penalty finite element method with discontinuous elements (1982) SIAM J. Numer. Anal., 19, pp. 742-760Becker, R., Mesh adaptation for dirichlet flow control via nitsche’s method (2002) Comm. Numer. Methods Engrg., 18, pp. 669-680Becker, R., Hansbo, P., Stenberg, R., A finite element method for domain decomposition with non-matching grids (2003) Mathematical Modelling and Numerical Analysis, 37, pp. 209-225Boiveau, T., Burman, E., A penalty-free nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity (2016) IMA J. Numer. Anal., 36, pp. 770-795Braess, D., Finite elements (2001) Theory, Fast Solvers, and Applications in Solid Mechanics, , Cambridge University PressBrenner, S.C., Scott, L.R., The mathematical theory of finite element methods (2008) Texts in Applied Mathematics, 15. , SpringerCarstensen, C., Dolzmann, G., Funken, S., Helm, D., Locking-free adaptive mixed finite element methods in linear elasticity (2000) Comput. Methods Appl. Mech. Engrg., 190, pp. 1701-1718Domínguez, C., Stephan, E.P., Maischak, M., FE/BE coupling for an acoustic fluid-structure interaction problem. Residual a posteriori error estimates (2012) Internat. J. Numer. Methods Engrg., 89, pp. 299-322Fritz, A., Hüeber, S., Wohlmuth, B., A comparison of mortar and nitsche techniques for linear elasticity (2004) Calcolo, 41, pp. 115-137Hansbo, A., Hansbo, P., Larson, M.G., A finite element method on composite grids based on nitsche’s method (2003) Math. Model. Numer. Anal., 37, pp. 495-514Heinrich, B., Nicaise, S., The nitsche mortar finite-element method for transmission problems with singularities (2003) IMA J. Numer. Anal., 23, pp. 331-358Nitsche, J., Uber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind (1971) Abh. Math. Semin. Univ. Hambg., 36, pp. 9-15Verfürth, R., (1996) A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, , Teubner VerlagVerfürth, R., A posteriori error estimation techniques for finite element methods (2013) Numerical Mathematics and Scientific Computation, , Oxford University PressVergara, C., Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics (2011) J. Sci. Comput., 46, pp. 100-123Widlund, O.B., Keyes, D.E., Domain decomposition methods in science and engineering XVI (2007) Lecture Notes in Computational Science and Engineering, 55. , SpringerWohlmuth, B.I., A residual based error estimator for mortar finite element discretizations (1999) Numer. Math., 84, pp. 143-171http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8883/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8883oai:repositorio.utb.edu.co:20.500.12585/88832023-04-24 09:55:01.219Repositorio Institucional UTBrepositorioutb@utb.edu.co