An a posteriori error estimator for a non-conforming domain decomposition method for a harmonic elastodynamics equation

We develop a reliable residual-based a posteriori error estimator for a nonconforming method with non-matching meshes for a harmonic elastodynamics equation and show that the approximation method converges with an optimal order to the exact solution. Moreover, we propose an adaptive strategy to redu...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8883
Acceso en línea:
https://hdl.handle.net/20.500.12585/8883
Palabra clave:
A posteriori error estimator
Adaptive method
Domain decomposition method
Harmonic elastodinamics equation
Nitsche method
Non-matching mesh
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:We develop a reliable residual-based a posteriori error estimator for a nonconforming method with non-matching meshes for a harmonic elastodynamics equation and show that the approximation method converges with an optimal order to the exact solution. Moreover, we propose an adaptive strategy to reduce computational cost and derive better approximations for problems with singularities and with large approximating systems. Numerical experiments confirm theoretical conclusions. © 2018 Global-Science Press.