Equivalence of categories of simple Lie algebras in positive characteristic

In this paper we first study some properties of the finite-dimensional simple restricted Lie algebras. In the literature is found a one-to-one correspondence between them and finite-dimensional simple Lie algebras over a field of positive characteristic. Motivated by this fact, we give a one-to-one...

Full description

Autores:
Guevara, Carlos Rafael
Quintero Vanegas, Elkin O.
Benítez Monsalve, Germán Alfonso
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12440
Acceso en línea:
https://hdl.handle.net/20.500.12585/12440
Palabra clave:
Restricted Lie algebras,
Restricted Simple Lie algebras,
Simple restricted Lie algebras,
Equivalence of categories
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_13e819fd4cfed2dd19d57c4b7d737027
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12440
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Equivalence of categories of simple Lie algebras in positive characteristic
title Equivalence of categories of simple Lie algebras in positive characteristic
spellingShingle Equivalence of categories of simple Lie algebras in positive characteristic
Restricted Lie algebras,
Restricted Simple Lie algebras,
Simple restricted Lie algebras,
Equivalence of categories
LEMB
title_short Equivalence of categories of simple Lie algebras in positive characteristic
title_full Equivalence of categories of simple Lie algebras in positive characteristic
title_fullStr Equivalence of categories of simple Lie algebras in positive characteristic
title_full_unstemmed Equivalence of categories of simple Lie algebras in positive characteristic
title_sort Equivalence of categories of simple Lie algebras in positive characteristic
dc.creator.fl_str_mv Guevara, Carlos Rafael
Quintero Vanegas, Elkin O.
Benítez Monsalve, Germán Alfonso
dc.contributor.author.none.fl_str_mv Guevara, Carlos Rafael
Quintero Vanegas, Elkin O.
Benítez Monsalve, Germán Alfonso
dc.subject.keywords.spa.fl_str_mv Restricted Lie algebras,
Restricted Simple Lie algebras,
Simple restricted Lie algebras,
Equivalence of categories
topic Restricted Lie algebras,
Restricted Simple Lie algebras,
Simple restricted Lie algebras,
Equivalence of categories
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In this paper we first study some properties of the finite-dimensional simple restricted Lie algebras. In the literature is found a one-to-one correspondence between them and finite-dimensional simple Lie algebras over a field of positive characteristic. Motivated by this fact, we give a one-to-one correspondence between their morphisms, which allow us to conclude that such categories are equivalent
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07-18
dc.date.accessioned.none.fl_str_mv 2023-07-27T19:43:18Z
dc.date.available.none.fl_str_mv 2023-07-27T19:43:18Z
dc.date.submitted.none.fl_str_mv 2023-07-27
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Monsalve, G. B., Guevara, C. R. P., & Vanegas, E. Q. (2023). Equivalence of categories of simple Lie algebras in positive characteristic. Proyecciones (Antofagasta, On line), 42(4), 815-831.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12440
dc.identifier.doi.none.fl_str_mv 10.22199/issn.0717-6279-5335
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Monsalve, G. B., Guevara, C. R. P., & Vanegas, E. Q. (2023). Equivalence of categories of simple Lie algebras in positive characteristic. Proyecciones (Antofagasta, On line), 42(4), 815-831.
10.22199/issn.0717-6279-5335
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12440
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv 2022-2023, COLOMBIA, CARTAGENA DE INDIAS
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Proyecciones Journal of Mathematics
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/1/5335-Article%20Text-34632-1-10-20230707.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/4/5335-Article%20Text-34632-1-10-20230707.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/5/5335-Article%20Text-34632-1-10-20230707.pdf.jpg
bitstream.checksum.fl_str_mv b6cbb8e6bc7d62502839cb9d0c015cf6
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
560d68c8b6222c11de81cbf47a7360fb
3d1d672ff3915bb3cfb0d024edf8da66
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021632228851712
spelling Guevara, Carlos Rafael40819dbb-a7d9-45dd-b58f-616d3d3e13c1Quintero Vanegas, Elkin O.6001ab13-21fb-4a7b-9f99-acef57a7757bBenítez Monsalve, Germán Alfonso9c1fd30f-d3f9-4a63-bcc8-d366b9b02d8c2022-2023, COLOMBIA, CARTAGENA DE INDIAS2023-07-27T19:43:18Z2023-07-27T19:43:18Z2022-07-182023-07-27Monsalve, G. B., Guevara, C. R. P., & Vanegas, E. Q. (2023). Equivalence of categories of simple Lie algebras in positive characteristic. Proyecciones (Antofagasta, On line), 42(4), 815-831.https://hdl.handle.net/20.500.12585/1244010.22199/issn.0717-6279-5335Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this paper we first study some properties of the finite-dimensional simple restricted Lie algebras. In the literature is found a one-to-one correspondence between them and finite-dimensional simple Lie algebras over a field of positive characteristic. Motivated by this fact, we give a one-to-one correspondence between their morphisms, which allow us to conclude that such categories are equivalent17 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Proyecciones Journal of MathematicsEquivalence of categories of simple Lie algebras in positive characteristicinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Restricted Lie algebras,Restricted Simple Lie algebras,Simple restricted Lie algebras,Equivalence of categoriesLEMBCartagena de IndiasCampus TecnológicoPúblico generalR. E. Block. The classification problem for simple Lie algebras of characteristic p. In: D. Winter, D. (eds) Lie Algebras and Related Topics. Lecture Notes in Mathematics, 933. Berlin: Springer, 1982. doi: 10.1007/BFb0093351R. E. Block, and R. L. Wilson, “The restricted simple Lie algebras are of classical or Cartan type”, Proceedings of the National Academy of Sciences, vol. 81, no. 16, pp. 5271-5274, 1984. doi: 10.1073/pnas.81.16.5271R. E. Block, and R. L. Wilson, “Classification of the restricted simple Lie algebras”, Journal of Algebra, vol. 114, no. 1, pp. 115-259, 1988. doi: 10.1016/0021-8693(88)90216-5N. Jacobson, Lie algebras. Interscience Tracts in Pure and Applied Mathematics, no. 10 Interscience New York: John Wiley & Sons, Inc., 1962V. G. Kac, “Description of the filtered Lie algebras with which graded Lie algebras of Cartan type are associated”, Mathematics of the USSR-Izvestiya, vol. 38, pp. 800-834, 1974. doi: 10.1070/IM1974v008n04ABEH002128A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. I. Sandwich elements”, Journal of Algebra, vol. 189, no. 2, 419-480, 1997. doi: 10.1006/jabr.1996.6861A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. II. Exceptional roots”, Journal of Algebra, vol. 216, no. 1, pp. 190-301, 1999. doi: 10.1006/jabr.1998.7746A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. III. The toral rank 2 case”, Journal of Algebra, vol. 242, no. 1, pp. 236-337, 2001. doi: 10.1006/jabr.2001.8806A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. IV. Solvable and classical roots”, Journal of Algebra, vol. 278, no. 2, pp. 766-833, 2004. doi: 10.1016/j.jalgebra.2003.10.028A. Premet, and H. Strade, Classification of finite dimensional simple Lie algebras in prime characteristics. In: Representations of algebraicgroups, quantum groups, and Lie algebras. Contemporary Mathematics, vol. 413. Providence, RI: American Mathematical Society, 2006A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. V. The non-Melikian case”, Journal of Algebra, vol. 314, no. 2, pp. 664-692, 2007. doi: 10.1016/j.jalgebra.2007.02.059A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. VI. Completion of the classification”, Journal of Algebra, vol. 320, no. 9, pp. 3559-3604, 2008. doi: 10.1016/j.jalgebra.2008.08.012S. Skryabin, “Toral rank one simple Lie algebras of low characteristics”, Journal of Algebra, vol. 200, no. 2, pp. 650-700, 1998. doi: 10.1006/jabr.1997.7231H. Strade, “The classification of the simple modular Lie algebras. III. Solution of the classical case”, Annals of Mathematics, vol. 133, no. 3, pp. 577-604, 1991. doi: 10.2307/2944320H. Strade, “The classification of the simple modular Lie algebras. II. The toral structure”, Journal of Algebra, vol. 151, no. 2, pp. 425-475, 1992. doi: 10.1016/0021-8693(92)90122-3H. Strade, Simple Lie algebras over fields of positive characteristic. vol. I: Structure theory. De Gruyter Expositions in Mathematics, 38. Walter de Gruyter & Co., Berlin, 2004H. Strade, and R. Farnsteiner, Modular Lie algebras and their representations. Monographs and Textbooks in Pure and Applied Mathematics, 116. Marcel Dekker, Inc., New York, 1988H. Strade, and R. L. Wilson, “Classification of simple Lie algebras over algebraically closed fields of prime characteristic”, Bulletin of the American Mathematical Society, vol. 24, no. 2, pp. 357-362, 1991.F. Viviani, “Infinitesimal deformations of restricted simple Lie algebras. I”, Journal of Algebra, vol. 320, no. 12, pp. 4102-4131, 2008. doi: 10.1016/j.jalgebra.2008.08.022http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL5335-Article Text-34632-1-10-20230707.pdf5335-Article Text-34632-1-10-20230707.pdfArtículo principalapplication/pdf270177https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/1/5335-Article%20Text-34632-1-10-20230707.pdfb6cbb8e6bc7d62502839cb9d0c015cf6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT5335-Article Text-34632-1-10-20230707.pdf.txt5335-Article Text-34632-1-10-20230707.pdf.txtExtracted texttext/plain27296https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/4/5335-Article%20Text-34632-1-10-20230707.pdf.txt560d68c8b6222c11de81cbf47a7360fbMD54THUMBNAIL5335-Article Text-34632-1-10-20230707.pdf.jpg5335-Article Text-34632-1-10-20230707.pdf.jpgGenerated Thumbnailimage/jpeg3638https://repositorio.utb.edu.co/bitstream/20.500.12585/12440/5/5335-Article%20Text-34632-1-10-20230707.pdf.jpg3d1d672ff3915bb3cfb0d024edf8da66MD5520.500.12585/12440oai:repositorio.utb.edu.co:20.500.12585/124402023-07-28 00:17:32.812Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=