On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach

This paper addresses the problem of optimal conductor selection in direct current (DC) distribution networks with radial topology. A nonlinear mixed-integer programming model (MINLP) is developed through a branch-to-node incidence matrix. An important contribution is that the proposed MINLP model in...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Grisales-Noreña, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10345
Acceso en línea:
https://hdl.handle.net/20.500.12585/10345
Palabra clave:
Direct current networks
Medium-voltage distribution networks
Radial structure
Mathematical modeling
Mixed-integer nonlinear programming
Telescopic configuration
Optimal conductor selection
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UTB2_136c3ba9b27ecc008807c8e44adc4db8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10345
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
title On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
spellingShingle On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
Direct current networks
Medium-voltage distribution networks
Radial structure
Mathematical modeling
Mixed-integer nonlinear programming
Telescopic configuration
Optimal conductor selection
title_short On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
title_full On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
title_fullStr On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
title_full_unstemmed On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
title_sort On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Grisales-Noreña, Luis Fernando
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Grisales-Noreña, Luis Fernando
dc.subject.keywords.spa.fl_str_mv Direct current networks
Medium-voltage distribution networks
Radial structure
Mathematical modeling
Mixed-integer nonlinear programming
Telescopic configuration
Optimal conductor selection
topic Direct current networks
Medium-voltage distribution networks
Radial structure
Mathematical modeling
Mixed-integer nonlinear programming
Telescopic configuration
Optimal conductor selection
description This paper addresses the problem of optimal conductor selection in direct current (DC) distribution networks with radial topology. A nonlinear mixed-integer programming model (MINLP) is developed through a branch-to-node incidence matrix. An important contribution is that the proposed MINLP model integrates a set of constraints related to the telescopic structure of the network, which allows reducing installation costs. The proposed model also includes a time-domain dependency that helps analyze the DC network under different load conditions, including renewable generation and battery energy storage systems, and different voltage regulation operative consigns. The objective function of the proposed model is made up of the total investment in conductors and the total cost of energy losses in one year of operation. These components of the objective function show multi-objective behavior. For this reason, different simulation scenarios are performed to identify their effects on the final grid configuration. An illustrative 10-nodes medium-voltage DC grid with 9 lines is used to carry out all the simulations through the General Algebraic Modeling System known as GAMS.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-30T12:21:57Z
dc.date.available.none.fl_str_mv 2021-07-30T12:21:57Z
dc.date.issued.none.fl_str_mv 2021-02-15
dc.date.submitted.none.fl_str_mv 2021-07-29
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Oscar Danilo Montoya, Walter Gil-González, Luis F. Grisales-Noreña, On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach, Electric Power Systems Research, Volume 194, 2021, 107072, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2021.107072
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10345
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2021.107072
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Oscar Danilo Montoya, Walter Gil-González, Luis F. Grisales-Noreña, On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach, Electric Power Systems Research, Volume 194, 2021, 107072, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2021.107072
10.1016/j.epsr.2021.107072
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10345
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.medium.none.fl_str_mv Recurso en línea / Electrónico
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Eléctrica
dc.source.spa.fl_str_mv Electric Power Systems Research, Volume 194, 2021
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/1/%5bArt.%209%5d%20On%20the%20mathematical%20modeling%20for%20opt_Oscar%20Danilo%20Montoya.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/4/%5bArt.%209%5d%20On%20the%20mathematical%20modeling%20for%20opt_Oscar%20Danilo%20Montoya.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/5/%5bArt.%209%5d%20On%20the%20mathematical%20modeling%20for%20opt_Oscar%20Danilo%20Montoya.pdf.jpg
bitstream.checksum.fl_str_mv d805c7e3093e93e367eba04ffb83372b
24013099e9e6abb1575dc6ce0855efd5
e20ad307a1c5f3f25af9304a7a7c86b6
c5d7251a2bb2e64e8616ffdeb3afa854
03f33027e41d348aae5fba9278c3ee98
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021790095114240
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter1747fed9-7818-4c10-a283-efb3c73ebb27Grisales-Noreña, Luis Fernandob2728c9a-1fd6-47c8-b7bc-d95ea02522072021-07-30T12:21:57Z2021-07-30T12:21:57Z2021-02-152021-07-29Oscar Danilo Montoya, Walter Gil-González, Luis F. Grisales-Noreña, On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach, Electric Power Systems Research, Volume 194, 2021, 107072, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2021.107072https://hdl.handle.net/20.500.12585/1034510.1016/j.epsr.2021.107072Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper addresses the problem of optimal conductor selection in direct current (DC) distribution networks with radial topology. A nonlinear mixed-integer programming model (MINLP) is developed through a branch-to-node incidence matrix. An important contribution is that the proposed MINLP model integrates a set of constraints related to the telescopic structure of the network, which allows reducing installation costs. The proposed model also includes a time-domain dependency that helps analyze the DC network under different load conditions, including renewable generation and battery energy storage systems, and different voltage regulation operative consigns. The objective function of the proposed model is made up of the total investment in conductors and the total cost of energy losses in one year of operation. These components of the objective function show multi-objective behavior. For this reason, different simulation scenarios are performed to identify their effects on the final grid configuration. An illustrative 10-nodes medium-voltage DC grid with 9 lines is used to carry out all the simulations through the General Algebraic Modeling System known as GAMS.Universidad Tecnológica de Bolívar10 páginasRecurso en línea / Electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electric Power Systems Research, Volume 194, 2021On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Direct current networksMedium-voltage distribution networksRadial structureMathematical modelingMixed-integer nonlinear programmingTelescopic configurationOptimal conductor selectionCartagena de IndiasCampus TecnológicoIngeniería EléctricaInvestigadoresA.Y. Abdelaziz, A. Fathy, A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks, Engineering Science and Technology, an International Journal 20 (2) (2017) 391–402.M. Lavorato, J.F. Franco, M.J. Rider, R. Romero, Imposing radiality constraints in distribution system optimization problems, IEEE Trans. Power Syst. 27 (1) (2012) 172–180.O.D. Montoya, A. Garces, C.A. Castro, Optimal conductor size selection in radial distribution networks using a mixed-Integer non-Linear programming formulation, IEEE Lat. Am. Trans. 16 (8) (2018) 2213–2220.J.S. Acosta, M.C. Tavares, Optimal selection and positioning of conductors in multicircuit overhead transmission lines using evolutionary computing, Electr. Power Syst. Res. 180 (2020) 106174.Z. Zhao, J. Mutale, Optimal conductor size selection in distribution networks with high penetration of distributed generation using adaptive genetic algorithm, Energies 12 (11) (2019) 2065, https://doi.org/10.3390/en12112065.W. Gil-Gonz´alez, O.D. Montoya, L.F. Grisales-Nore˜na, F. Cruz-Perag´on, G. Alcal´a, Economic dispatch of renewable generators and BESS in DC microgrids using second-Order cone optimization, Energies 13 (7) (2020) 1703.H. Lotfi, A. Khodaei, AC versus DC microgrid planning, IEEE Trans Smart Grid 8 (1) (2015) 296–304.O.D. Montoya, W. Gil-Gonz´alez, J.C. Hern´andez, D.A. Giral-Ramírez, A. Medina- Quesada, A mixed-Integer nonlinear programming model for optimal reconfiguration of DC distribution feeders, Energies 13 (17) (2020) 4440, https:// doi.org/10.3390/en13174440M. Nasir, S. Iqbal, H.A. Khan, Optimal planning and design of low-voltage lowpower solar dc microgrids, IEEE Trans. Power Syst. 33 (3) (2017) 2919–2928.Z. Wang, H. Liu, D.C. Yu, X. Wang, H. Song, A practical approach to the conductor size selection in planning radial distribution systems, IEEE Trans. Power Delivery 15 (1) (2000) 350–354.M. Thenepalle, A comparative study on optimal conductor selection for radial distribution network using conventional and genetic algorithm approach, Int J Comput Appl 17 (2) (2011) 6–13.R.S. Rao, K. Satish, S. Narasimham, Optimal conductor size selection in distribution systems using the harmony search algorithm with a differential operator, Electric Power Components and Systems 40 (1) (2011) 41–56.T.M. Khalil, A.V. Gorpinich, Optimal conductor selection and capacitor placement for loss reduction of radial distribution systems by selective particle swarm optimization. 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), IEEE, 2012, pp. 215–220.B.M. Kalesar, Conductor selection optimization in radial distribution system considering load growth using MDE algorithm, World Journal of Modeling and Simulation 10 (3) (2014) 175–184.J.F. Franco, M.J. Rider, M. Lavorato, R. Romero, Optimal conductor size selection and reconductoring in radial distribution systems using a mixed-integer LP approach, IEEE Trans. Power Syst. 28 (1) (2013) 10–20.C. Phurailatpam, B.S. Rajpurohit, L. Wang, Planning and optimization of autonomous DC microgrids for rural and urban applications in india, Renewable Sustainable Energy Rev. 82 (2018) 194–204M.F. Zia, E. Elbouchikhi, M. Benbouzid, Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations, Appl Energy 237 (2019) 695–707.O.D. Montoya, W. Gil-Gonz´alez, L. Grisales-Nore˜na, An exact MINLP model for optimal location and sizing of DGs in distribution networks: a general algebraic modeling system approach, Ain Shams Eng. J. (2019), https://doi.org/10.1016/j. asej.2019.08.011.O.D. Montoya, L.F. Grisales-Nore˜na, W. Gil-Gonz´alez, G. Alcal´a, Q. Hernandez- Escobedo, Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators, Symmetry (Basel) 12 (2) (2020) 322, https://doi.org/10.3390/sym12020322A. Soroudi, Power system optimization modeling in GAMS, Springer International Publishing, 2017, https://doi.org/10.1007/978-3-319-62350-4H. Li, L. Zhang, X. Shen, A loop-analysis theory based power flow method and its linear formulation for low-voltage DC grid, Electr. Power Syst. Res. 187 (2020) 106473, https://doi.org/10.1016/j.epsr.2020.106473P. Skworcow, D. Paluszczyszyn, B. Ulanicki, R. Rudek, T. Belrain, Optimisation of Pump and Valve Schedules in Complex Large-scale Water Distribution Systems Using GAMS Modelling Language, Procedia Eng. 70 (2014) 1566–1574, https:// doi.org/10.1016/j.proeng.2014.02.173.12th International Conference on Computing and Control for the Water Industry, CCWI2013O.D. Montoya, W. Gil-Gonz´alez, L. Grisales-Nore˜na, C. Orozco-Henao, F. Serra, Economic dispatch of BESS and renewable generators in DC microgrids using voltage-Dependent load models, Energies 12 (23) (2019) 4494, https://doi.org/ 10.3390/en12234494L. Tartibu, B. Sun, M. Kaunda, Multi-objective optimization of the stack of a thermoacoustic engine using GAMS, Appl. Soft Comput. 28 (2015) 30–43, https:// doi.org/10.1016/j.asoc.2014.11.055A. Naghiloo, M. Abbaspour, B. Mohammadi-Ivatloo, K. Bakhtari, GAMS Based approach for optimal design and sizing of a pressure retarded osmosis power plant in bahmanshir river of iran, Renewable Sustainable Energy Rev. 52 (2015) 1559–1565, https://doi.org/10.1016/j.rser.2015.08.018W. Gil-Gonz´alez, O.D. Montoya, L.F. Grisales-Nore˜na, A.-J. Perea-Moreno, Q. Hernandez-Escobedo, Optimal placement and sizing of wind generators in AC grids considering reactive power capability and wind speed curves, Sustainability 12 (7) (2020) 2983, https://doi.org/10.3390/su12072983.S. Tao, L. Xiuzhi, W. Yanyan, C. Yanli, C. Dayin, A matlab simulation of the kruskal algorithm for erecting communication network. 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, pp. 41–43.M.T.M. Emmerich, A.H. Deutz, A tutorial on multiobjective optimization: fundamentals and evolutionary methods, Nat Comput 17 (3) (2018) 585–609, https://doi.org/10.1007/s11047-018-9685-yR.T. Marler, J.S. Arora, The weighted sum method for multi-objective optimization: new insights, Struct. Multidiscip. Optim. 41 (6) (2009) 853–862, https://doi.org/10.1007/s00158-009-0460-7http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL[Art. 9] On the mathematical modeling for opt_Oscar Danilo Montoya.pdf[Art. 9] On the mathematical modeling for opt_Oscar Danilo Montoya.pdfArtículoapplication/pdf968335https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/1/%5bArt.%209%5d%20On%20the%20mathematical%20modeling%20for%20opt_Oscar%20Danilo%20Montoya.pdfd805c7e3093e93e367eba04ffb83372bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT[Art. 9] On the mathematical modeling for opt_Oscar Danilo Montoya.pdf.txt[Art. 9] On the mathematical modeling for opt_Oscar Danilo Montoya.pdf.txtExtracted texttext/plain54145https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/4/%5bArt.%209%5d%20On%20the%20mathematical%20modeling%20for%20opt_Oscar%20Danilo%20Montoya.pdf.txtc5d7251a2bb2e64e8616ffdeb3afa854MD54THUMBNAIL[Art. 9] On the mathematical modeling for opt_Oscar Danilo Montoya.pdf.jpg[Art. 9] On the mathematical modeling for opt_Oscar Danilo Montoya.pdf.jpgGenerated Thumbnailimage/jpeg91367https://repositorio.utb.edu.co/bitstream/20.500.12585/10345/5/%5bArt.%209%5d%20On%20the%20mathematical%20modeling%20for%20opt_Oscar%20Danilo%20Montoya.pdf.jpg03f33027e41d348aae5fba9278c3ee98MD5520.500.12585/10345oai:repositorio.utb.edu.co:20.500.12585/103452023-05-26 11:14:45.679Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=