Boundary element analysis of shear deformable shallow shells under harmonic excitation
In this work, the harmonic analysis of shallow shells using the Boundary Element Method, is presented. The proposed boundary element formulation is based on a direct time-domain integration using the elastostatic fundamental solutions for both in-plane elasticity and shear deformable plates. Shallow...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9051
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9051
- Palabra clave:
- Boundary element method
Dual reciprocity boundary element method
Harmonic analysis
Harmonic excitation
Shear deformable shallow shells
Thick shells
Harmonic analysis
Boundary element analysis
Dual reciprocity boundary element method
Harmonic excitation
Shallow shells
Thick shells
Boundary element method
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_133331da0f221d26defe089b1b33f508 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9051 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Boundary element analysis of shear deformable shallow shells under harmonic excitation |
title |
Boundary element analysis of shear deformable shallow shells under harmonic excitation |
spellingShingle |
Boundary element analysis of shear deformable shallow shells under harmonic excitation Boundary element method Dual reciprocity boundary element method Harmonic analysis Harmonic excitation Shear deformable shallow shells Thick shells Harmonic analysis Boundary element analysis Dual reciprocity boundary element method Harmonic excitation Shallow shells Thick shells Boundary element method |
title_short |
Boundary element analysis of shear deformable shallow shells under harmonic excitation |
title_full |
Boundary element analysis of shear deformable shallow shells under harmonic excitation |
title_fullStr |
Boundary element analysis of shear deformable shallow shells under harmonic excitation |
title_full_unstemmed |
Boundary element analysis of shear deformable shallow shells under harmonic excitation |
title_sort |
Boundary element analysis of shear deformable shallow shells under harmonic excitation |
dc.subject.keywords.none.fl_str_mv |
Boundary element method Dual reciprocity boundary element method Harmonic analysis Harmonic excitation Shear deformable shallow shells Thick shells Harmonic analysis Boundary element analysis Dual reciprocity boundary element method Harmonic excitation Shallow shells Thick shells Boundary element method |
topic |
Boundary element method Dual reciprocity boundary element method Harmonic analysis Harmonic excitation Shear deformable shallow shells Thick shells Harmonic analysis Boundary element analysis Dual reciprocity boundary element method Harmonic excitation Shallow shells Thick shells Boundary element method |
description |
In this work, the harmonic analysis of shallow shells using the Boundary Element Method, is presented. The proposed boundary element formulation is based on a direct time-domain integration using the elastostatic fundamental solutions for both in-plane elasticity and shear deformable plates. Shallow shell was modeled coupling boundary element formulation of shear deformable plate and two-dimensional plane stress elasticity. Effects of shear deformation and rotatory inertia were included in the formulation. Domain integrals related to inertial terms were treated using the Dual Reciprocity Boundary Element Method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. Copyright © 2014 Tech Science Press |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:50Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:50Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
CMES - Computer Modeling in Engineering and Sciences; Vol. 100, Núm. 2; pp. 105-118 |
dc.identifier.issn.none.fl_str_mv |
15261492 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9051 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
24537991200 |
identifier_str_mv |
CMES - Computer Modeling in Engineering and Sciences; Vol. 100, Núm. 2; pp. 105-118 15261492 Universidad Tecnológica de Bolívar Repositorio UTB 24537991200 |
url |
https://hdl.handle.net/20.500.12585/9051 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Tech Science Press |
publisher.none.fl_str_mv |
Tech Science Press |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84909646731&partnerID=40&md5=15a0c7707d8fae92fd6b3cde370af968 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9051/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021730339913728 |
spelling |
2020-03-26T16:32:50Z2020-03-26T16:32:50Z2014CMES - Computer Modeling in Engineering and Sciences; Vol. 100, Núm. 2; pp. 105-11815261492https://hdl.handle.net/20.500.12585/9051Universidad Tecnológica de BolívarRepositorio UTB24537991200In this work, the harmonic analysis of shallow shells using the Boundary Element Method, is presented. The proposed boundary element formulation is based on a direct time-domain integration using the elastostatic fundamental solutions for both in-plane elasticity and shear deformable plates. Shallow shell was modeled coupling boundary element formulation of shear deformable plate and two-dimensional plane stress elasticity. Effects of shear deformation and rotatory inertia were included in the formulation. Domain integrals related to inertial terms were treated using the Dual Reciprocity Boundary Element Method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. Copyright © 2014 Tech Science PressRecurso electrónicoapplication/pdfengTech Science Presshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84909646731&partnerID=40&md5=15a0c7707d8fae92fd6b3cde370af968Boundary element analysis of shear deformable shallow shells under harmonic excitationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Boundary element methodDual reciprocity boundary element methodHarmonic analysisHarmonic excitationShear deformable shallow shellsThick shellsHarmonic analysisBoundary element analysisDual reciprocity boundary element methodHarmonic excitationShallow shellsThick shellsBoundary element methodUseche Vivero, JairoBeskos, D.E., Dynamic analysis of structures and structural systems (2003) Boundary Element Advances in Solid Mechanics, 440, pp. 1-53Dirgantara, T., (2002) Boundary Element Analysis of Cracks in Shear Deformable Plates and Shells, , WIT PressDirgantara, T., Aliabadi, M., A new boundary element formulation for shear deformable shells analysis (1999) International Journal for Numerical Methods in Engineering, 45, pp. 1257-1275Duddeck, F., (2010) Fourier BEM: Generalization of Boundary Element Methods by Fourier Transform, , SpringerGao, X., Davies, T., (2002) Boundary Element Programming in Mechanics, , Cambridge University PressHall, W., (2013) The Boundary Element Method (Solid Mechanics and Its Applications), , SpringerNardini, D., Brebbia, C., A new approach to free vibration analysis using boundary elements (1982) Boundary Elements Methods in Engineering, 26, pp. 312-326Partridge, P., Bebbia, C., Wrobel, L., (1992) The Dual Reciprocity Boundary Element Method, , Computational Mechanics PublicationsProvidakis, C., Beskos, D., Free and forced vibration of shallow shells by boundary and interior elements (1991) Computational Methods in Applied Mechanics and Engineering, 92, pp. 55-74Providakis, C., Beskos, D., Dynamic analysis of plates by boundary elements (1999) Applied Mechanics Review, 52, pp. 213-236Rashed, Y., (2000) Topics in Engineering Vol 35: Boundary Element Formulations for Thick Plates, , WIT PressReddy, J., (2004) Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, , CRC PressUseche, J., Albuquerque, E., Dynamic analysis of shear deformable plates using the dual reciprocity method (2012) Engineering Analysis with Boundary Element Journal, 36, pp. 627-632Useche, J., Albuquerque, E., Sollero, P., Harmonic analysis of shear deformable orthotropic cracked plates using the boundary element method (2012) Engineering Analysis with Boundary Elements Journal, 36, pp. 1528-1535VanderWeen, F., Application of the direct boundary integral equation method to Reissner's plate model (1982) International Journal of Numerical Methods in Engineering, 67, pp. 1-10Wen, P., Adetoro, M., Xu, Y., The fundamental solution of Mindlin plates with damping in the Laplace domain and its applications (2008) Engineering Analysis with Boundary Elements Journal, 32 (10), pp. 840-882Wen, P., Aliabadi, M., Application of dual reciprocity method to plates and shells (2000) Engineering Analysis with Boundary Elements Journal, 24, pp. 583-590Wen, P., Aliabadi, M., Boundary element frequency domain formulation for dynamic analysis of Mindlin plates (2006) International Journal for Numerical Methods in Engineering, 67 (11), pp. 1617-1640Wen, P., Aliabadi, M., Young, A., Plane stress and plate bending coupling in BEM analysis of shallow shells (2000) International Journal for Numerical Methods in Engineering, 48, pp. 1107-1125Wen, P., Aliabadi, M., Young, A., The boundary element method for dynamic plate bending problems (2000) International Journal of Solid and Structures, 37, pp. 5177-5188Wrobel, L., Aliabadi, M., (2002) The Boundary Element Method Volume 2: Applications in Solid and Structures, , Wiley, New YorkZhang, J., Atluri, S., A boundary/interior element method for quasi-static and transient response analyses of shallow shells (1986) Computer and Structures, 24, pp. 213-233http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9051/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9051oai:repositorio.utb.edu.co:20.500.12585/90512023-04-24 09:18:40.351Repositorio Institucional UTBrepositorioutb@utb.edu.co |