Economic lot scheduling with deliberated and controlled coproduction

This paper presents an algorithm to define the optimal parameters for deliberated and controlled coproduction in an economic lot scheduling problem setting (DCCELSP). Coproduction is said to be deliberated and controlled because it is possible to decide whether or not to coproduce when all the param...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9100
Acceso en línea:
https://hdl.handle.net/20.500.12585/9100
Palabra clave:
Controlled coproduction
Deliberated coproduction
Lot sizing
Production
Scheduling
Co-production
Cost advantages
Deliberated coproduction
Economic lot scheduling
Economic lot scheduling problems
Gain insight
Holding costs
Lot sizing
Optimal parameter
Production rates
Two-product
Optimization
Production
Scheduling
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_12f6a91af18503e510b5ce042161d0ab
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9100
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Economic lot scheduling with deliberated and controlled coproduction
title Economic lot scheduling with deliberated and controlled coproduction
spellingShingle Economic lot scheduling with deliberated and controlled coproduction
Controlled coproduction
Deliberated coproduction
Lot sizing
Production
Scheduling
Co-production
Cost advantages
Deliberated coproduction
Economic lot scheduling
Economic lot scheduling problems
Gain insight
Holding costs
Lot sizing
Optimal parameter
Production rates
Two-product
Optimization
Production
Scheduling
title_short Economic lot scheduling with deliberated and controlled coproduction
title_full Economic lot scheduling with deliberated and controlled coproduction
title_fullStr Economic lot scheduling with deliberated and controlled coproduction
title_full_unstemmed Economic lot scheduling with deliberated and controlled coproduction
title_sort Economic lot scheduling with deliberated and controlled coproduction
dc.subject.keywords.none.fl_str_mv Controlled coproduction
Deliberated coproduction
Lot sizing
Production
Scheduling
Co-production
Cost advantages
Deliberated coproduction
Economic lot scheduling
Economic lot scheduling problems
Gain insight
Holding costs
Lot sizing
Optimal parameter
Production rates
Two-product
Optimization
Production
Scheduling
topic Controlled coproduction
Deliberated coproduction
Lot sizing
Production
Scheduling
Co-production
Cost advantages
Deliberated coproduction
Economic lot scheduling
Economic lot scheduling problems
Gain insight
Holding costs
Lot sizing
Optimal parameter
Production rates
Two-product
Optimization
Production
Scheduling
description This paper presents an algorithm to define the optimal parameters for deliberated and controlled coproduction in an economic lot scheduling problem setting (DCCELSP). Coproduction is said to be deliberated and controlled because it is possible to decide whether or not to coproduce when all the parameters associated with the process are known. The aim is to determine how to produce two products most economically where deliberated coproduction is an option. For this purpose, a procedure for defining optimal lot periods is introduced. Two models are proposed for this procedure and a numerical illustration is provided to gain insight into their dynamics. The cost advantages of coproduction were found to depend on the relationship between setup and holding costs, production rates, and demand for products. The more similar these system parameters are and the higher the machine usage ratio is, the more favourable coproduction is. Additionally, if coproduction is not deliberated appropriately, costs soar. © 2011 Elsevier B.V. All rights reserved.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:57Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:57Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv European Journal of Operational Research; Vol. 219, Núm. 2; pp. 396-404
dc.identifier.issn.none.fl_str_mv 03772217
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9100
dc.identifier.doi.none.fl_str_mv 10.1016/j.ejor.2011.12.020
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 37662305100
16636045200
54383095000
identifier_str_mv European Journal of Operational Research; Vol. 219, Núm. 2; pp. 396-404
03772217
10.1016/j.ejor.2011.12.020
Universidad Tecnológica de Bolívar
Repositorio UTB
37662305100
16636045200
54383095000
url https://hdl.handle.net/20.500.12585/9100
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857052143&doi=10.1016%2fj.ejor.2011.12.020&partnerID=40&md5=9b904d361d4b7e5f5bbbb89eeccfdbc1
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9100/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021658591100928
spelling 2020-03-26T16:32:57Z2020-03-26T16:32:57Z2012European Journal of Operational Research; Vol. 219, Núm. 2; pp. 396-40403772217https://hdl.handle.net/20.500.12585/910010.1016/j.ejor.2011.12.020Universidad Tecnológica de BolívarRepositorio UTB376623051001663604520054383095000This paper presents an algorithm to define the optimal parameters for deliberated and controlled coproduction in an economic lot scheduling problem setting (DCCELSP). Coproduction is said to be deliberated and controlled because it is possible to decide whether or not to coproduce when all the parameters associated with the process are known. The aim is to determine how to produce two products most economically where deliberated coproduction is an option. For this purpose, a procedure for defining optimal lot periods is introduced. Two models are proposed for this procedure and a numerical illustration is provided to gain insight into their dynamics. The cost advantages of coproduction were found to depend on the relationship between setup and holding costs, production rates, and demand for products. The more similar these system parameters are and the higher the machine usage ratio is, the more favourable coproduction is. Additionally, if coproduction is not deliberated appropriately, costs soar. © 2011 Elsevier B.V. All rights reserved.Universidad Politécnica de Cartagena Ministerio de Ciencia e Innovación, MICINNThe work described in this paper has been supported by the project “CORSARI MAGIC DPI2010-18243” of the Ministerio de Ciencia e Innvovación of Government of Spain within the Program “Proyectos de Investigación Fundamental no orientada”. The translation of this paper was funded by the Universidad Politécnica de Valencia, Spain. Appendix ARecurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84857052143&doi=10.1016%2fj.ejor.2011.12.020&partnerID=40&md5=9b904d361d4b7e5f5bbbb89eeccfdbc1Economic lot scheduling with deliberated and controlled coproductioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Controlled coproductionDeliberated coproductionLot sizingProductionSchedulingCo-productionCost advantagesDeliberated coproductionEconomic lot schedulingEconomic lot scheduling problemsGain insightHolding costsLot sizingOptimal parameterProduction ratesTwo-productOptimizationProductionSchedulingVidal-Carreras P.I.Garcia-Sabater J.P.Coronado Hernández, Jairo RafaelAgrah, S., A dynamic uncapacitated lot-sizing problem with co-production (2011) Optimization Letters, pp. 1-11Akturk M.Selim, Onen, S., Dynamic lot sizing and tool management in automated manufacturing systems (2002) Computers and Operations Research, 29 (8), pp. 1059-1079. , DOI 10.1016/S0305-0548(00)00103-9, PII S0305054800001039Bitran, G.B., Leong, T.Y., Coproduction of substitutable products (1995) Production Planning & Control, 6 (1), pp. 13-25Bitran, G.R., Dasu, S., Ordering policies in an environment of stochastic yields and substitutable demands (1992) Operations Research, 40 (5), pp. 999-1017Bitran, G.R., Gilbert, S.M., Coproduction processes with random yields in the semiconductor industry (1994) Operations Research, 42 (3), pp. 476-491Bitran, G.R., Leong, T.Y., Deterministic approximations to coproduction problems with service constraints and random yields (1992) Management Science, 38 (5), pp. 724-742Bomberger, E.E., A dynamic programming approach to a lot size scheduling problem (1966) Management Science, 12 (11), p. 778Bravo, D., Rodriguez, E., Medina, M., Nisin and lacticin 481 coproduction by Lactococcus lactis strains isolated from raw ewes' milk (2009) Journal of Dairy Science, 92 (10), pp. 4805-4811Chiu, S.W., Cheng, C.B., Wu, M.F., Yang, J.C., An algebraic approach for determining the optimal lot size for epq model with rework process (2010) Mathematical & Computational Applications, 15 (3), pp. 364-370Delporte, C.M., Thomas, L.J., Lot sizing and sequencing for N-products on one facility (1977) Management Science, 23 (10), pp. 1070-1079Deuermeyer, B.L., Multi-type production system for perishable inventories (1979) Operations Research, 27 (5), pp. 935-943Deuermeyer, B.L., Pierskalla, W.P., By-product production system with an alternative (1978) Management Science, 24 (13), pp. 1373-1383Dobson Gregory, Economic lot-scheduling problem: Achieving feasibility using time-varying lot sizes (1987) Operations Research, 35 (5), pp. 764-771Doll, C.L., Whybark, D.C., An iterative procedure for the single-machine multi-product lot scheduling problem (1973) Management Science, 20 (1), pp. 50-55Elmaghraby, S.E., The economic lot scheduling problem (ELSP): Review and extensions (1978) Management Science, 24 (6), pp. 587-598Gerchak, Y., Tripathy, A., Wang, K., Co-production models with random functionality yields (1996) IIE Transactions (Institute of Industrial Engineers), 28 (5), pp. 391-403Hanssmann, F., (1962) Operations-Research in Production and Inventory Control, , J. Wiley New YorkHsu, W.L., On the general feasibility test of scheduling lot sizes for several products on one machine (1983) Management Science, 29 (1), pp. 93-105Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M., The capacitated lot sizing problem: A review of models and algorithms (2003) Omega, 31 (5), pp. 365-378. , DOI 10.1016/S0305-0483(03)00059-8, PII S0305048303000598Lisbona, P., Romeo, L.M., Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC/GT (2008) International Journal of Hydrogen Energy, 33 (20), pp. 5755-5764Lopez, M.A.N., Kingsman, B.G., The economic lot scheduling problem - Theory and practice (1991) International Journal of Production Economics, 23 (13), pp. 147-164Madigan, J.G., Scheduling a multi-product single machine system for an infinite planning period (1968) Management Science, 14 (11), pp. 713-719Nahmias, S., Moinzadeh, K., Lot sizing with randomly graded yields (1997) Operations Research, 45 (6), pp. 974-986Nielsen, D.R., Yoon, S.H., Yuan, C.J., Prather, K.L.J., Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in E. coli (2010) Biotechnology Journal, 5 (3), pp. 274-284Oner, S., Bilgic, T., Economic lot scheduling with uncontrolled co-production (2008) European Journal of Operational Research, 188 (3), pp. 793-810. , DOI 10.1016/j.ejor.2007.05.016, PII S0377221707004936Ou, J.H., Wein, L.M., Dynamic scheduling of a production inventory system with by-products and random yield (1991) Management Science, 41 (6), pp. 1000-1017Sox, C.R., Jackson, P.L., Bowman, A., Muckstadt, J.A., A review of the stochastic lot scheduling problem (1999) International Journal of Production Economics, 62 (3), pp. 181-200Taskin, Z.C., Unal, A.T., Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products (2009) European Journal of Operational Research, 199 (1), pp. 252-261Vemuganti, R.R., On the feasibility of scheduling lot sizes for two products on one machine (1978) Manage Sci, 24 (15), pp. 1668-1673Vidal-Carreras, P.I., Garcia-Sabater, J.P., Comparison of heuristics for an economic lot scheduling problem with deliberated coproduction (2009) Journal of Industrial Engineering and Management, 2 (3), pp. 437-463Vidal-Carreras, P.I., Garcia-Sabater, J.P., Marín-Garcia, J.A., Garcia-Sabater, J.J., Parts grouping in ELSP (2008) Insights on Current Organization Engineering, p. 291Viswanathan, S., Goyal, S.K., On 'Manufacturing batch size and ordering policy for products with shelf lives' (2002) International Journal of Production Research, 40 (8), pp. 1965-1970. , DOI 10.1080/00207540210123661Winands, E.M.M., Adan, I.J.B.F., Van Houtum, G.J., The stochastic economic lot scheduling problem: A survey (2011) European Journal of Operational Research, 210 (1), pp. 1-9Zhu, X., Wilhelm, W.E., Scheduling and lot sizing with sequence-dependent setup: A literature review (2006) IIE Transactions (Institute of Industrial Engineers), 38 (11), pp. 987-1007. , DOI 10.1080/07408170600559706, PII J784373L461611VQhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9100/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9100oai:repositorio.utb.edu.co:20.500.12585/91002023-05-25 16:25:22.032Repositorio Institucional UTBrepositorioutb@utb.edu.co