Restoration of retinal images with space-variant blur

Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are often degraded with blur. In many common cases, the blur varies across the field of v...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9066
Acceso en línea:
https://hdl.handle.net/20.500.12585/9066
Palabra clave:
Blind deconvolution
Deblurring
Image restoration
Retinal image
Space-variant restoration
Blind deconvolution
Clinical resources
Deblurring
Innovative strategies
Point-spread functions
Restoration methods
Retinal image
Space variants
Aberrations
Convolution
Diagnosis
Image reconstruction
Ophthalmology
Restoration
Image enhancement
Algorithm
Angiography
Article
Artifact
Astigmatism
Automated pattern recognition
Eye fundus
Human
Image processing
Methodology
Normal distribution
Optics
Pathology
Reproducibility
Retina
Retina blood vessel
Statistical model
Vision
Visual system examination
Algorithms
Angiography
Artifacts
Astigmatism
Diagnostic Techniques, Ophthalmological
Fundus Oculi
Humans
Image Processing, Computer-Assisted
Models, Statistical
Normal distribution
Optics and Photonics
Pattern Recognition, Automated
Reproducibility of Results
Retina
Retinal Vessels
Vision, Ocular
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_12d5e1929bf856130a3a459c204615b1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9066
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Restoration of retinal images with space-variant blur
title Restoration of retinal images with space-variant blur
spellingShingle Restoration of retinal images with space-variant blur
Blind deconvolution
Deblurring
Image restoration
Retinal image
Space-variant restoration
Blind deconvolution
Clinical resources
Deblurring
Innovative strategies
Point-spread functions
Restoration methods
Retinal image
Space variants
Aberrations
Convolution
Diagnosis
Image reconstruction
Ophthalmology
Restoration
Image enhancement
Algorithm
Angiography
Article
Artifact
Astigmatism
Automated pattern recognition
Eye fundus
Human
Image processing
Methodology
Normal distribution
Optics
Pathology
Reproducibility
Retina
Retina blood vessel
Statistical model
Vision
Visual system examination
Algorithms
Angiography
Artifacts
Astigmatism
Diagnostic Techniques, Ophthalmological
Fundus Oculi
Humans
Image Processing, Computer-Assisted
Models, Statistical
Normal distribution
Optics and Photonics
Pattern Recognition, Automated
Reproducibility of Results
Retina
Retinal Vessels
Vision, Ocular
title_short Restoration of retinal images with space-variant blur
title_full Restoration of retinal images with space-variant blur
title_fullStr Restoration of retinal images with space-variant blur
title_full_unstemmed Restoration of retinal images with space-variant blur
title_sort Restoration of retinal images with space-variant blur
dc.subject.keywords.none.fl_str_mv Blind deconvolution
Deblurring
Image restoration
Retinal image
Space-variant restoration
Blind deconvolution
Clinical resources
Deblurring
Innovative strategies
Point-spread functions
Restoration methods
Retinal image
Space variants
Aberrations
Convolution
Diagnosis
Image reconstruction
Ophthalmology
Restoration
Image enhancement
Algorithm
Angiography
Article
Artifact
Astigmatism
Automated pattern recognition
Eye fundus
Human
Image processing
Methodology
Normal distribution
Optics
Pathology
Reproducibility
Retina
Retina blood vessel
Statistical model
Vision
Visual system examination
Algorithms
Angiography
Artifacts
Astigmatism
Diagnostic Techniques, Ophthalmological
Fundus Oculi
Humans
Image Processing, Computer-Assisted
Models, Statistical
Normal distribution
Optics and Photonics
Pattern Recognition, Automated
Reproducibility of Results
Retina
Retinal Vessels
Vision, Ocular
topic Blind deconvolution
Deblurring
Image restoration
Retinal image
Space-variant restoration
Blind deconvolution
Clinical resources
Deblurring
Innovative strategies
Point-spread functions
Restoration methods
Retinal image
Space variants
Aberrations
Convolution
Diagnosis
Image reconstruction
Ophthalmology
Restoration
Image enhancement
Algorithm
Angiography
Article
Artifact
Astigmatism
Automated pattern recognition
Eye fundus
Human
Image processing
Methodology
Normal distribution
Optics
Pathology
Reproducibility
Retina
Retina blood vessel
Statistical model
Vision
Visual system examination
Algorithms
Angiography
Artifacts
Astigmatism
Diagnostic Techniques, Ophthalmological
Fundus Oculi
Humans
Image Processing, Computer-Assisted
Models, Statistical
Normal distribution
Optics and Photonics
Pattern Recognition, Automated
Reproducibility of Results
Retina
Retinal Vessels
Vision, Ocular
description Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration method was tested on artificially and naturally degraded retinal images. The results show an important enhancement, significant enough to leverage the images' clinical use. © 2014 Society of Photo-Optical Instrumentation Engineers.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:52Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:52Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Biomedical Optics; Vol. 19, Núm. 1
dc.identifier.issn.none.fl_str_mv 10833668
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9066
dc.identifier.doi.none.fl_str_mv 10.1117/1.JBO.19.1.016023
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24329839300
7201466399
15846700100
55882243100
identifier_str_mv Journal of Biomedical Optics; Vol. 19, Núm. 1
10833668
10.1117/1.JBO.19.1.016023
Universidad Tecnológica de Bolívar
Repositorio UTB
24329839300
7201466399
15846700100
55882243100
url https://hdl.handle.net/20.500.12585/9066
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897748145&doi=10.1117%2f1.JBO.19.1.016023&partnerID=40&md5=1f497b46e4a49bb686336ad515805e62
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9066/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021732272439296
spelling 2020-03-26T16:32:52Z2020-03-26T16:32:52Z2014Journal of Biomedical Optics; Vol. 19, Núm. 110833668https://hdl.handle.net/20.500.12585/906610.1117/1.JBO.19.1.016023Universidad Tecnológica de BolívarRepositorio UTB2432983930072014663991584670010055882243100Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration method was tested on artificially and naturally degraded retinal images. The results show an important enhancement, significant enough to leverage the images' clinical use. © 2014 Society of Photo-Optical Instrumentation Engineers.Ministerio de Educación, Cultura y Deporte Ministerio de Ciencia e Innovación, MICINN: TEC2010-09834-E, TEC2010-20307, DPI2009-08879 Grantová Agentura České Republiky: 13-29225SThis research has been partly funded by the Spanish Ministerio de Ciencia e Innovación y Fondos FEDER (project DPI2009-08879) and projects TEC2010-09834-E and TEC2010-20307. Financial support was also provided by the Grant Agency of the Czech Republic under project 13-29225S. Authors are grateful to Juan Luís Fuentes from the Miguel Servet University Hospital (Zaragoza, Spain) for providing images. The first author also thanks the Spanish Ministerio de Educación for an FPU doctoral scholarship.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84897748145&doi=10.1117%2f1.JBO.19.1.016023&partnerID=40&md5=1f497b46e4a49bb686336ad515805e62Restoration of retinal images with space-variant blurinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Blind deconvolutionDeblurringImage restorationRetinal imageSpace-variant restorationBlind deconvolutionClinical resourcesDeblurringInnovative strategiesPoint-spread functionsRestoration methodsRetinal imageSpace variantsAberrationsConvolutionDiagnosisImage reconstructionOphthalmologyRestorationImage enhancementAlgorithmAngiographyArticleArtifactAstigmatismAutomated pattern recognitionEye fundusHumanImage processingMethodologyNormal distributionOpticsPathologyReproducibilityRetinaRetina blood vesselStatistical modelVisionVisual system examinationAlgorithmsAngiographyArtifactsAstigmatismDiagnostic Techniques, OphthalmologicalFundus OculiHumansImage Processing, Computer-AssistedModels, StatisticalNormal distributionOptics and PhotonicsPattern Recognition, AutomatedReproducibility of ResultsRetinaRetinal VesselsVision, OcularMarrugo A.G.Millán M.S.Šorel M.Šroubek F.Bartling, H., Wanger, P., Martin, L., Automated quality evaluation of digital fundus photographs (2009) Acta Ophthalmol, 87 (6), pp. 643-647Godara, P., Adaptive optics retinal imaging: Emerging clinical applications (2010) Optom. Vision Sci, 87 (12), pp. 930-941Arines, J., Acosta, E., Low-cost adaptive astigmatism compensator for improvement of eye fundus camera (2011) Opt. Lett, 36 (21), pp. 4164-4166Marrugo, A.G., Retinal image restoration by means of blind deconvolution (2011) J. Biomed. Opt, 16 (11), p. 116016Levin, A., Understanding blind deconvolution algorithms (2011) IEEE Trans. Pattern Anal. Mach. Intell, 33 (12), pp. 2354-2367Bedggood, P., Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging (2008) J. Biomed. Opt, 13 (2), p. 024008Tutt, R., Optical and visual impact of tear break-up in human eyes (2000) Invest. Ophthalmol. Visual Sci, 41 (13), pp. 4117-4123Xu, J., Dynamic changes in ocular zernike aberrations and tear menisci measured with a wavefront sensor and an anterior segment oct (2011) Invest. Ophthalmol. Vis. Sci, 52 (8), pp. 6050-6056Costello, T., Mikhael, W., Efficient restoration of space-variant blurs from physical optics by sectioning with modified wiener filtering (2003) Digital Signal Process, 13 (1), pp. 1-22Bardsley, J., Jefferies, S., Nagy, J., Plemmons, R., A computational method for the restoration of images with an unknown, spatially-varying blur (2006) Optics Express, 14 (5), pp. 1767-1782. , http://www.opticsexpress.org/ViewMedia.cfm?id=88317&seq=0, DOI 10.1364/OE.14.001767Harmeling, S., Hirsch, M., Scholkopf, B., Space-variant singleimage blind deconvolution for removing camera shake (2010) Adv. Neural Inf. Process. Syst, 23, pp. 829-837Whyte, O., Non-uniform deblurring for shaken images (2012) Int. J. Comput. Vis, 98 (2), pp. 168-186Gupta, A., Single image deblurring using motion density functions (2010) European Conf. on Computer Vision (ECCV 2010), pp. 171-184. , K. Daniilidis, P. Maragos, and N. Paragios, Eds., Springer-Verlag, Crete, GreeceTallón, M., Space-variant blur deconvolution and denoising in the dual exposure problem (2012) Inf. Fusion, 14 (4), pp. 396-409Salem, N.M., Nandi, A.K., Novel and adaptive contribution of the red channel in pre-processing of colour fundus images (2007) Journal of the Franklin Institute, 344 (3-4), pp. 243-256. , DOI 10.1016/j.jfranklin.2006.09.001, PII S0016003206001281Marrugo, A.G., Millán, M.S., Retinal image analysis: Preprocessing and feature extraction (2011) J. Phys.: Conf. Ser, 274 (1), p. 012039Golub, G., Van Loan, C., (1996) Matrix Computations, 3. , Johns Hopkins University Press, Baltimore, MarylandNavarro, R., Moreno, E., Dorronsoro, C., Monochromatic aberrations and point-spread functions of the human eye across the visual field (1998) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 15 (9), pp. 2522-2529Sroubek, F., Flusser, J., Multichannel blind deconvolution of spatially misaligned images (2005) IEEE Transactions on Image Processing, 14 (7), pp. 874-883. , DOI 10.1109/TIP.2005.849322Navarro, R., The optical design of the human eye: A critical review (2009) J. Optom, 2 (1), pp. 3-18Hu, Z., Yang, M.-H., Good regions to deblur (2012) European Conf. on Computer Vision (ECCV 2012), pp. 59-72. , Springer-VerlagNagy, J.G., O'Leary, D.P., Restoring images degraded by spatially variant blur (1998) SIAM Journal of Scientific Computing, 19 (4), pp. 1063-1082. , PII S106482759528507XSorel, M., Sroubek, F., Flusser, J., Towards super-resolution in the presence of spatially varying blur (2010) Super-Resolution Imaging, pp. 187-218. , P. Milanfar, Ed., CRC Press, Boca Raton, FloridaCampisi, P., Egiazarian, K., (2007) Blind Image Deconvolution: Theory and Applications, , CRC Press, Boca Raton, FloridaChambolle, A., Lions, P.L., Image recovery via total variation minimization and related problems (1997) Numer. Math, 76 (2), pp. 167-188Hoover, A., Goldbaum, M., Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels (2003) IEEE Trans. Med. Imaging, 22 (8), pp. 951-958Gao, L., Smith, R.T., Tkaczyk, T.S., Snapshot hyperspectral retinal camera with the image mapping spectrometer (ims) (2012) Biomed. Opt. Express, 3 (1), pp. 48-54Hammer, M., Schweitzer, D., Quantitative reflection spectroscopy at the human ocular fundus (2002) Physics in Medicine and Biology, 47 (2), pp. 179-191. , DOI 10.1088/0031-9155/47/2/301, PII S0031915502274904Vucea, V., Blood oxygenation measurements by multichannel reflectometry on the venous and arterial structures of the retina (2011) Appl. Opt, 50 (26), pp. 5185-5191Saine, P., Tyler, M., (2002) Ophthalmic Photography: Retinal Photography, Angiography, and Electronic Imaging, , Butterworth-Heinemann, Woburn, MassachusettsHolmes, T., Dynamic indocyanine green angiography measurements (2012) J. Biomed. Opt, 17 (11), p. 116028Kirsch, R.A., Computer determination of the constituent structure of biological images (1971) Comput. Biomed. Res, 4 (3), pp. 315-328Al-Rawi, M., Qutaishat, M., Arrar, M., An improved matched filter for blood vessel detection of digital retinal images (2007) Computers in Biology and Medicine, 37 (2), pp. 262-267. , DOI 10.1016/j.compbiomed.2006.03.003, PII S0010482506000424http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9066/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9066oai:repositorio.utb.edu.co:20.500.12585/90662021-02-02 14:52:42.038Repositorio Institucional UTBrepositorioutb@utb.edu.co