Natural language contents evaluation system for multi-class news categorization using machine learning and transformers

The exponential growth of digital documents has come with rapid progress in text classification techniques in recent years. This paper provides text classification models, which analyze various steps of news classification, where some algorithmic approaches for machine learning, such as Logistic Reg...

Full description

Autores:
Marrugo, Duván A
Martinez-Santos, Juan Carlos
Puertas, Edwin
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12578
Acceso en línea:
https://hdl.handle.net/20.500.12585/12578
Palabra clave:
Text Classification
Automatic Classification
News Classification
Transformer
Machine Learning
Deep Learning
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_1132be6c67b68762d1e4eeea53c4f5bc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12578
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
title Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
spellingShingle Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
Text Classification
Automatic Classification
News Classification
Transformer
Machine Learning
Deep Learning
LEMB
title_short Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
title_full Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
title_fullStr Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
title_full_unstemmed Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
title_sort Natural language contents evaluation system for multi-class news categorization using machine learning and transformers
dc.creator.fl_str_mv Marrugo, Duván A
Martinez-Santos, Juan Carlos
Puertas, Edwin
dc.contributor.author.none.fl_str_mv Marrugo, Duván A
Martinez-Santos, Juan Carlos
Puertas, Edwin
dc.subject.keywords.spa.fl_str_mv Text Classification
Automatic Classification
News Classification
Transformer
Machine Learning
Deep Learning
topic Text Classification
Automatic Classification
News Classification
Transformer
Machine Learning
Deep Learning
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The exponential growth of digital documents has come with rapid progress in text classification techniques in recent years. This paper provides text classification models, which analyze various steps of news classification, where some algorithmic approaches for machine learning, such as Logistic Regression, Support Vector Machine, and Random Forest, are implemented. In turn, the uses of Transformers as classification models for the solution of the same problem, proposing BERT and DistilBERT as possible solutions to compare for the automatic classification of news containing articles belonging to four categories (World, Sports, Business, and Science/Technology). We obtained the highest accuracy on the machine learning side, with 88% using Support Vector Machine with Word2Vec. However, using Transformer DistilBERT, we got an efficient model in terms of performance and 91.7% accuracy for classifying news.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-05T16:10:06Z
dc.date.available.none.fl_str_mv 2023-12-05T16:10:06Z
dc.date.issued.none.fl_str_mv 2023-12-05
dc.date.submitted.none.fl_str_mv 2023-12-05
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Marrugo, D. A., Martinez-Santos, J. C., & Puertas, E. (2023, October). Natural Language Contents Evaluation System for Multi-class News Categorization Using Machine Learning and Transformers. In Workshop on Engineering Applications (pp. 115-126). Cham: Springer Nature Switzerland.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12578
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-46739-4_11
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Marrugo, D. A., Martinez-Santos, J. C., & Puertas, E. (2023, October). Natural Language Contents Evaluation System for Multi-class News Categorization Using Machine Learning and Transformers. In Workshop on Engineering Applications (pp. 115-126). Cham: Springer Nature Switzerland.
10.1007/978-3-031-46739-4_11
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12578
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Maestría en Ingeniería
dc.source.spa.fl_str_mv Applied Computer Sciences in Engineering
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/1/Marrugo-2023-Natural-language-contents-evaluatio.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/3/Marrugo-2023-Natural-language-contents-evaluatio.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/4/Marrugo-2023-Natural-language-contents-evaluatio.pdf.jpg
bitstream.checksum.fl_str_mv d90a8ca76a2f8a5c2df573402ad6f13c
e20ad307a1c5f3f25af9304a7a7c86b6
dc88dab1e8328da1cc34f95d4a64a360
e2fc37103375ba5b3b5d341c3a4312e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021775398273024
spelling Marrugo, Duván A05d2d5f3-e9bd-4c5d-a546-f436ce989b7dMartinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe77318Puertas, Edwin9e3c6f17-9041-40e3-a5fb-929a21d229012023-12-05T16:10:06Z2023-12-05T16:10:06Z2023-12-052023-12-05Marrugo, D. A., Martinez-Santos, J. C., & Puertas, E. (2023, October). Natural Language Contents Evaluation System for Multi-class News Categorization Using Machine Learning and Transformers. In Workshop on Engineering Applications (pp. 115-126). Cham: Springer Nature Switzerland.https://hdl.handle.net/20.500.12585/1257810.1007/978-3-031-46739-4_11Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe exponential growth of digital documents has come with rapid progress in text classification techniques in recent years. This paper provides text classification models, which analyze various steps of news classification, where some algorithmic approaches for machine learning, such as Logistic Regression, Support Vector Machine, and Random Forest, are implemented. In turn, the uses of Transformers as classification models for the solution of the same problem, proposing BERT and DistilBERT as possible solutions to compare for the automatic classification of news containing articles belonging to four categories (World, Sports, Business, and Science/Technology). We obtained the highest accuracy on the machine learning side, with 88% using Support Vector Machine with Word2Vec. However, using Transformer DistilBERT, we got an efficient model in terms of performance and 91.7% accuracy for classifying news.Universidad Tecnlógica de Bolívar12 páginasapplication/pdfengApplied Computer Sciences in EngineeringNatural language contents evaluation system for multi-class news categorization using machine learning and transformersinfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Text ClassificationAutomatic ClassificationNews ClassificationTransformerMachine LearningDeep LearningLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasCampus TecnológicoMaestría en IngenieríaPúblico generallab 912, M.: Deeplearning hw2 transformer (2022). https://kaggle.com/ competitions/deeplearning-hw2-transformerAhmed, J., Ahmed, M.: Online news classification using machine learning tech niques. IIUM Eng. J. 22, 210–225 (2021). https://doi.org/10.31436/iiumej.v22i2. 1662, https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/1662Ahmed, J., Ahmed, M.: Online news classification using machine learning tech niques. IIUM Eng. J. 22, 210–225 (2021). https://doi.org/10.31436/iiumej.v22i2. 1662, https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/1662Patro, A., Mahima Patel, R.S., Save, D.J.: Real time news classification using machine learning. Int. J. Adv. Sci. Technol. 29(9s), 620–630 (2020)Barua, A., Sharif, O., Hoque, M.M.: Multi-class sports news categorization using machine learning techniques: resource creation and evaluation. Proce dia Compute. Sci. 193, 112–121 (2021). https://doi.org/10.1016/j.procs.2021.11. 002, https://www.sciencedirect.com/science/article/pii/S1877050921021268. 10th International Young Scientists Conference in Computational Science, YSC2021, 28 June–2 July 2021Blackledge, C., Atapour-Abarghouei, A.: Transforming fake news: robust gener alisable news classification using transformers (2021). https://doi.org/10.48550/ ARXIV.2109.09796, http://arxiv.org/2109.09796Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for sta tistical machine translation (2014). https://doi.org/10.48550/ARXIV.1406.1078, http://arxiv.org/1406.1078Deb, N., Jha, V., Panjiyar, A., Gupta, R.: A comparative analysis of news catego rization using machine learning approaches. Int. J. Sci. Technol. Res. 9, 2469–2472 (2020)Devi, J.S., Bai, D.M.R., Reddy, C.: Newspaper article classification using machine learning techniques. Int. J. Innov. Technol. Explor. Eng. 9(5), 872–877 (2020). https://doi.org/10.35940/ijitee.e2753.039520, https://dx.doi.org/10.35940/ijitee.E2753.039520Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018). https://doi.org/10. 48550/ARXIV.1810.04805, http://arxiv.org/1810.04805 11. Elnagar, A., Al-Debsi, R., Einea, O.: Arabic text classification using deep learning models. Inf. Process. Manag. 57(1), 102121 (2020). https://doi.org/ 10.1016/j.ipm.2019.102121, https://www.sciencedirect.com/science/article/pii/ S0306457319303413 12. Gillioz, A., Casas, J., Mugellini, E., Khaled, O.A.: Overview of the transformer based models for NLP tasks. In: 2020 15th Conference on Computer Science and Information Systems (FedCSIS), pp. 179–183 (2020). https://doi.org/10.15439/ 2020F20Elnagar, A., Al-Debsi, R., Einea, O.: Arabic text classification using deep learning models. Inf. Process. Manag. 57(1), 102121 (2020). https://doi.org/ 10.1016/j.ipm.2019.102121, https://www.sciencedirect.com/science/article/pii/ S0306457319303413illioz, A., Casas, J., Mugellini, E., Khaled, O.A.: Overview of the transformer based models for NLP tasks. In: 2020 15th Conference on Computer Science and Information Systems (FedCSIS), pp. 179–183 (2020). https://doi.org/10.15439/ 2020F20Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017). https://doi.org/10.1109/tnnls.2016.2582924Kosheleva, O., Kreinovich, V., Shahbazova, S.: Type-2 fuzzy analysis explains ubiquity of triangular and trapezoid membership functions. In: Shahbazova, S.N., Kacprzyk, J., Balas, V.E., Kreinovich, V. (eds.) Recent Developments and the New Direction in Soft-Computing Foundations and Applications. SFSC, vol. 393, pp. 63–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-47124-8 6Lilleberg, J., Zhu, Y., Zhang, Y.: Support vector machines and word2vec for text classification with semantic features. In: 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 136–140 (2015). https://doi.org/10.1109/ICCI-CC.2015.7259377Luo, X.: Efficient English text classification using selected machine learning tech niques. Alex. Eng. J. 60(3), 3401–3409 (2021). https://doi.org/10.1016/j.aej.2021. 02.009, https://www.sciencedirect.com/science/article/pii/S1110016821000806Munikar, M., Shakya, S., Shrestha, A.: Fine-grained sentiment classification using BERT. In: 2019 Artificial Intelligence for Transforming Business and Society (AITB), vol. 1, pp. 1–5 (2019). https://doi.org/10.1109/AITB48515.2019.8947435Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word repre sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Nat ural Language Processing (EMNLP), pp. 1532–1543. Association for Computa tional Linguistics, Doha (2014). https://doi.org/10.3115/v1/D14-1162, https:// www.aclanthology.org/D14-1162Qadi, L.A., Rifai, H.E., Obaid, S., Elnagar, A.: Arabic text classification of news articles using classical supervised classifiers. In: 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS), pp. 1–6 (2019). https://doi.org/ 10.1109/ICTCS.2019.8923073Rustamov, S., Mustafayev, E., Clements, M.: Context analysis of customer requests using a hybrid adaptive neuro fuzzy inference system and hidden Markov models in the natural language call routing problem. Open Eng. 8, 61–68 (2018). https:// doi.org/10.1515/eng-2018-0008Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (2019). https://doi.org/10.48550/ ARXIV.1910.01108, http://arxiv.org/1910.01108Vaswani, A., et al.: Attention is all you need (2017). https://doi.org/10.48550/ ARXIV.1706.03762, http://arxiv.org/1706.03762Yang, Y., Chen, X., Tan, R., Xiao, Y.: IoT Technologies and Applications, pp. 1–60. Wiley (2021). https://doi.org/10.1002/9781119593584.ch1Yıldırım, S., Jothimani, D., Kavaklıoˇglu, C., Ba¸sar, A.: Classification of “hot news” for financial forecast using NLP techniques. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4719–4722 (2018). https://doi.org/10.1109/BigData. 2018.8621903http://purl.org/coar/resource_type/c_6501ORIGINALMarrugo-2023-Natural-language-contents-evaluatio.pdfMarrugo-2023-Natural-language-contents-evaluatio.pdfapplication/pdf604815https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/1/Marrugo-2023-Natural-language-contents-evaluatio.pdfd90a8ca76a2f8a5c2df573402ad6f13cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTMarrugo-2023-Natural-language-contents-evaluatio.pdf.txtMarrugo-2023-Natural-language-contents-evaluatio.pdf.txtExtracted texttext/plain26798https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/3/Marrugo-2023-Natural-language-contents-evaluatio.pdf.txtdc88dab1e8328da1cc34f95d4a64a360MD53THUMBNAILMarrugo-2023-Natural-language-contents-evaluatio.pdf.jpgMarrugo-2023-Natural-language-contents-evaluatio.pdf.jpgGenerated Thumbnailimage/jpeg6961https://repositorio.utb.edu.co/bitstream/20.500.12585/12578/4/Marrugo-2023-Natural-language-contents-evaluatio.pdf.jpge2fc37103375ba5b3b5d341c3a4312e8MD5420.500.12585/12578oai:repositorio.utb.edu.co:20.500.12585/125782023-12-06 00:20:42.96Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=