HoloEasy, a web application for computer generated holograms

If the appropriate phase and/or amplitude profile is placed on a Diffractive Optical Element (DOE) it can practically generate an image of an object (hologram) by diffraction of the light. The problem of generating computer holograms consists of calculating numerically the profile of phase and/or am...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8909
Acceso en línea:
https://hdl.handle.net/20.500.12585/8909
Palabra clave:
Computer generated hologram
Diffuser
IFTA
Speckles
Web application
Data visualization
Diffraction
Diffractive optical elements
Diffusers (optical)
Digital storage
Electron holography
Fourier transforms
Holograms
Image communication systems
Image processing
Iterative methods
Lithography
Optical communication
Optical data processing
Optical image storage
Speckle
Amplitude distributions
Computer generated holograms
Fourier transformations
Fraunhofer diffraction
IFTA
Optical applications
Stabilization parameters
Web application
Computer generated holography
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_111af1d65b5832a38419e0b8ffc3065e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8909
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv HoloEasy, a web application for computer generated holograms
title HoloEasy, a web application for computer generated holograms
spellingShingle HoloEasy, a web application for computer generated holograms
Computer generated hologram
Diffuser
IFTA
Speckles
Web application
Data visualization
Diffraction
Diffractive optical elements
Diffusers (optical)
Digital storage
Electron holography
Fourier transforms
Holograms
Image communication systems
Image processing
Iterative methods
Lithography
Optical communication
Optical data processing
Optical image storage
Speckle
Amplitude distributions
Computer generated holograms
Fourier transformations
Fraunhofer diffraction
IFTA
Optical applications
Stabilization parameters
Web application
Computer generated holography
title_short HoloEasy, a web application for computer generated holograms
title_full HoloEasy, a web application for computer generated holograms
title_fullStr HoloEasy, a web application for computer generated holograms
title_full_unstemmed HoloEasy, a web application for computer generated holograms
title_sort HoloEasy, a web application for computer generated holograms
dc.contributor.editor.none.fl_str_mv Serrano C. J.E.
Martínez-Santos, Juan Carlos
dc.subject.keywords.none.fl_str_mv Computer generated hologram
Diffuser
IFTA
Speckles
Web application
Data visualization
Diffraction
Diffractive optical elements
Diffusers (optical)
Digital storage
Electron holography
Fourier transforms
Holograms
Image communication systems
Image processing
Iterative methods
Lithography
Optical communication
Optical data processing
Optical image storage
Speckle
Amplitude distributions
Computer generated holograms
Fourier transformations
Fraunhofer diffraction
IFTA
Optical applications
Stabilization parameters
Web application
Computer generated holography
topic Computer generated hologram
Diffuser
IFTA
Speckles
Web application
Data visualization
Diffraction
Diffractive optical elements
Diffusers (optical)
Digital storage
Electron holography
Fourier transforms
Holograms
Image communication systems
Image processing
Iterative methods
Lithography
Optical communication
Optical data processing
Optical image storage
Speckle
Amplitude distributions
Computer generated holograms
Fourier transformations
Fraunhofer diffraction
IFTA
Optical applications
Stabilization parameters
Web application
Computer generated holography
description If the appropriate phase and/or amplitude profile is placed on a Diffractive Optical Element (DOE) it can practically generate an image of an object (hologram) by diffraction of the light. The problem of generating computer holograms consists of calculating numerically the profile of phase and/or amplitude with which the DOE should be built. Computer Generated Holograms (CGH) can be used to construct general-purpose optical elements in the sense that they serve to transform a spatial distribution of light into any other. In this way, they are used in optical communication systems, laser machining, laser welding, optical readers, human vision, data storage and visualization, image processing, among others. Unlike the optical techniques for generating holograms, in the CGH both the desired image and the phase and/or amplitude distribution are calculated numerically. In this work, a web environment application has been developed to calculate the phase changes that a coherent beam of light must undergo when incident on a DOE, so that it is transformed by Fraunhofer diffraction, in the hologram of an object. We use an algorithm with iterative Fourier transformations (IFTA) that uses regulation and stabilization parameters can be chosen by the user. In addition, the user has the freedom to choose holograms for optical applications (free of speckles) generating initial diffusers of a limited band and without phase singularities. © Springer Nature Switzerland AG 2018.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:35Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:35Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 885, pp. 471-486
dc.identifier.isbn.none.fl_str_mv 9783319989976
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8909
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-98998-3_36
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57190688459
57204064204
57204066424
26325154200
identifier_str_mv Communications in Computer and Information Science; Vol. 885, pp. 471-486
9783319989976
18650929
10.1007/978-3-319-98998-3_36
Universidad Tecnológica de Bolívar
Repositorio UTB
57190688459
57204064204
57204066424
26325154200
url https://hdl.handle.net/20.500.12585/8909
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 26 September 2018 through 28 September 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054364104&doi=10.1007%2f978-3-319-98998-3_36&partnerID=40&md5=c8a84000367be52829a021cde74113d5
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 13th Colombian Conference on Computing, CCC 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8909/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021570876669952
spelling Serrano C. J.E.Martínez-Santos, Juan CarlosPatiño Vanegas, AlbertoDiaz-Pacheco L.L.Patiño-Vanegas J.J.Martínez-Santos J.C.2020-03-26T16:32:35Z2020-03-26T16:32:35Z2018Communications in Computer and Information Science; Vol. 885, pp. 471-486978331998997618650929https://hdl.handle.net/20.500.12585/890910.1007/978-3-319-98998-3_36Universidad Tecnológica de BolívarRepositorio UTB57190688459572040642045720406642426325154200If the appropriate phase and/or amplitude profile is placed on a Diffractive Optical Element (DOE) it can practically generate an image of an object (hologram) by diffraction of the light. The problem of generating computer holograms consists of calculating numerically the profile of phase and/or amplitude with which the DOE should be built. Computer Generated Holograms (CGH) can be used to construct general-purpose optical elements in the sense that they serve to transform a spatial distribution of light into any other. In this way, they are used in optical communication systems, laser machining, laser welding, optical readers, human vision, data storage and visualization, image processing, among others. Unlike the optical techniques for generating holograms, in the CGH both the desired image and the phase and/or amplitude distribution are calculated numerically. In this work, a web environment application has been developed to calculate the phase changes that a coherent beam of light must undergo when incident on a DOE, so that it is transformed by Fraunhofer diffraction, in the hologram of an object. We use an algorithm with iterative Fourier transformations (IFTA) that uses regulation and stabilization parameters can be chosen by the user. In addition, the user has the freedom to choose holograms for optical applications (free of speckles) generating initial diffusers of a limited band and without phase singularities. © Springer Nature Switzerland AG 2018.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054364104&doi=10.1007%2f978-3-319-98998-3_36&partnerID=40&md5=c8a84000367be52829a021cde74113d513th Colombian Conference on Computing, CCC 2018HoloEasy, a web application for computer generated hologramsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fComputer generated hologramDiffuserIFTASpecklesWeb applicationData visualizationDiffractionDiffractive optical elementsDiffusers (optical)Digital storageElectron holographyFourier transformsHologramsImage communication systemsImage processingIterative methodsLithographyOptical communicationOptical data processingOptical image storageSpeckleAmplitude distributionsComputer generated hologramsFourier transformationsFraunhofer diffractionIFTAOptical applicationsStabilization parametersWeb applicationComputer generated holography26 September 2018 through 28 September 2018Herzig, H.P., (1998) Micro-Optics: Elements, Systems and Applications, , Taylor and Francis, LondonWyrowski, F., Diffractive optical elements: Iterative calculation of quantized, blazed structures (1990) J. Opt. Soc. Am., 7, pp. 961-963Pellat-Finet, P., (2009) Optique De Fourier, théorie métaxiale Et Fractionnaire, , Springer, ParisGerchberg, R.W., Saxton, W.O., A practical algorithm for the determination of phase from image and diffraction plane pictures (1972) Optik, 35, pp. 237-346Fienup, J.R., Reconstruction of an object from the modulus of its Fourier transform (1978) Opt. Lett., 3, pp. 27-29Youla, D.C., Generalized image restoration by the method of alternating orthogonal projections (1979) IEEE Trans. Circuits Syst., 25, pp. 694-702Gerchberg, R.W., Super resolution through error energy reduction (1974) Opt. Acta., 21, pp. 709-720Papoulis, A., A new algorithm in spectral analysis an band-limited extrapolation (1975) IEEE Trans. Circuits Syst., 22, pp. 735-742Fienup, J.R., Phase retrieval algorithm for a complicated optical system (1993) Appl. Opt., 32, pp. 1737-1746Wyrowski, F., Bryngdahl, O., Iterative Fourier-transform algorithm applied to computer holography (1988) J. Opt. Soc. A., 5, pp. 1058-1064Aagedal, H., Schmid, M., Beth, T., Teiwes, S., Wyrowski, F., Chaussee, R., Theory of speckles in diffractive optics and its application to beam shaping (1996) J. Mod. Opt., 43, pp. 1409-1421Bräuer, R., Wyrowski, F., Bryngdahl, O., Diffuser in digital holography (1991) J. Opt. Am., 8, pp. 572-578Chhetri, B., Serikawa, S., Shimomura, T., Heuristic algorithm for calculation of sufficiently randomized object-independent diffuser for holography (2000) SPIE, 4113, pp. 205-216Kim, H., Lee, B., Iterative Fourier transform algorithm with adaptative regularization parameter distribution for optimal design of diffractive optical elements (2004) Jpn. J. Appl. Phys., 43, pp. 702-705Tikhonov, A., Goncharsky, V., Stepanov, V., Yagola, A., (1995) Numerical Methods for the Solution of Ill-Posed Problems, , Kluwer Academic, BostonKotlyar, V., Seraphimovich, P., Soifer, V., An iterative algorithm for designing diffractive optical elements with regularization (1998) Opt. Lasers Eng., 29, pp. 261-268Kim, H., Yang, B., Lee, B., Iterative Fourier transform algorithm with regularization for optimal design of diffractive optical elements (2004) J. Opt. Soc. Am. A., 21, pp. 2353-2365http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8909/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8909oai:repositorio.utb.edu.co:20.500.12585/89092023-05-26 16:30:09.411Repositorio Institucional UTBrepositorioutb@utb.edu.co