Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images

Purpose: The aim of this study was to evaluate the efficacy of artificial intelligence–derived morphometric parameters in characterizing Fuchs corneal endothelial dystrophy (FECD) from specular microscopy images. Methods: This cross-sectional study recruited patients diagnosed with FECD, who underwe...

Full description

Autores:
Prada, Angelica M.
Quintero, Fernando
Mendoza, Kevin
Galvis, Virgilio
Tello, Alejandro
Romero, Lenny A
Marrugo, Andres G.
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12706
Acceso en línea:
https://hdl.handle.net/20.500.12585/12706
Palabra clave:
Fuchs dystrophy
Specular microscopy
Endothelial cell density
Artificial intelligence,
Deep learning
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_10a59b66623d6eab7ea11d89a7420e43
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12706
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
title Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
spellingShingle Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
Fuchs dystrophy
Specular microscopy
Endothelial cell density
Artificial intelligence,
Deep learning
LEMB
title_short Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
title_full Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
title_fullStr Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
title_full_unstemmed Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
title_sort Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images
dc.creator.fl_str_mv Prada, Angelica M.
Quintero, Fernando
Mendoza, Kevin
Galvis, Virgilio
Tello, Alejandro
Romero, Lenny A
Marrugo, Andres G.
dc.contributor.author.none.fl_str_mv Prada, Angelica M.
Quintero, Fernando
Mendoza, Kevin
Galvis, Virgilio
Tello, Alejandro
Romero, Lenny A
Marrugo, Andres G.
dc.subject.keywords.spa.fl_str_mv Fuchs dystrophy
Specular microscopy
Endothelial cell density
Artificial intelligence,
Deep learning
topic Fuchs dystrophy
Specular microscopy
Endothelial cell density
Artificial intelligence,
Deep learning
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Purpose: The aim of this study was to evaluate the efficacy of artificial intelligence–derived morphometric parameters in characterizing Fuchs corneal endothelial dystrophy (FECD) from specular microscopy images. Methods: This cross-sectional study recruited patients diagnosed with FECD, who underwent ophthalmologic evaluations, including slit-lamp examinations and corneal endothelial assessments using specular microscopy. The modified Krachmer grading scale was used for clinical FECD classification. The images were processed using a convolutional neural network for segmentation and morphometric parameter estimation, including effective endothelial cell density, guttae area ratio, coefficient of variation of size, and hexagonality. A mixed-effects model was used to assess relationships between the FECD clinical classification and measured parameters. Results: Of 52 patients (104 eyes) recruited, 76 eyes were analyzed because of the exclusion of 26 eyes for poor quality retroillumination photographs. The study revealed significant discrepancies between artificial intelligence–based and built-in microscope software cell density measurements (1322 ± 489 cells/mm2 vs. 2216 ± 509 cells/mm2, P < 0.001). In the central region, guttae area ratio showed the strongest correlation with modified Krachmer grades (0.60, P < 0.001). In peripheral areas, only guttae area ratio in the inferior region exhibited a marginally significant positive correlation (0.29, P < 0.05). Conclusions: This study confirms the utility of CNNs for precise FECD evaluation through specular microscopy. Guttae area ratio emerges as a compelling morphometric parameter aligning closely with modified Krachmer clinical grading. These findings set the stage for future large-scale studies, with potential applications in the assessment of irreversible corneal edema risk after phacoemulsification in FECD patients, as well as in monitoring novel FECD therapies.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-12T13:21:34Z
dc.date.available.none.fl_str_mv 2024-08-12T13:21:34Z
dc.date.issued.none.fl_str_mv 2024-09-09
dc.date.submitted.none.fl_str_mv 2024-08-12
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Prada, A. M., Quintero, F., Mendoza, K., Galvis, V., Tello, A., Romero, L. A., & Marrugo, A. G. (2024). Assessing Fuchs corneal endothelial dystrophy using Artificial Intelligence–Derived morphometric parameters from specular microscopy images. Cornea. https://doi.org/10.1097/ico.0000000000003460
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12706
dc.identifier.doi.none.fl_str_mv 10.1097/ICO.0000000000003460
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Prada, A. M., Quintero, F., Mendoza, K., Galvis, V., Tello, A., Romero, L. A., & Marrugo, A. G. (2024). Assessing Fuchs corneal endothelial dystrophy using Artificial Intelligence–Derived morphometric parameters from specular microscopy images. Cornea. https://doi.org/10.1097/ico.0000000000003460
10.1097/ICO.0000000000003460
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12706
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 8 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Cornea
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/1/assessing_fuchs_corneal_endothelial_dystrophy.3.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/4/assessing_fuchs_corneal_endothelial_dystrophy.3.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/5/assessing_fuchs_corneal_endothelial_dystrophy.3.pdf.jpg
bitstream.checksum.fl_str_mv d1bbc07a039ae3e2745159b99bd510ec
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
309f3a180daaee008632d4cfc0c753a6
83108603f2db42551d7eb63f503002f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021646585954304
spelling Prada, Angelica M.4626d69e-31ff-4ace-ad29-3dd7f23dd07cQuintero, Fernandof07ea69c-0c88-4255-be83-d0aa76f66768Mendoza, Kevin135a7756-119e-4c7c-ae0b-d7111a8a3a61Galvis, Virgilio85e1c5d8-b4a4-4bed-828d-267cd8ca4b5bTello, Alejandrob88c245a-e5d9-4feb-a8e5-fc2a6555415dRomero, Lenny A4e34aa8a-f981-4e1d-ae32-d45acb6abcf9Marrugo, Andres G.3d6cd388-d48f-4669-934f-49ca4179f5422024-08-12T13:21:34Z2024-08-12T13:21:34Z2024-09-092024-08-12Prada, A. M., Quintero, F., Mendoza, K., Galvis, V., Tello, A., Romero, L. A., & Marrugo, A. G. (2024). Assessing Fuchs corneal endothelial dystrophy using Artificial Intelligence–Derived morphometric parameters from specular microscopy images. Cornea. https://doi.org/10.1097/ico.0000000000003460https://hdl.handle.net/20.500.12585/1270610.1097/ICO.0000000000003460Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPurpose: The aim of this study was to evaluate the efficacy of artificial intelligence–derived morphometric parameters in characterizing Fuchs corneal endothelial dystrophy (FECD) from specular microscopy images. Methods: This cross-sectional study recruited patients diagnosed with FECD, who underwent ophthalmologic evaluations, including slit-lamp examinations and corneal endothelial assessments using specular microscopy. The modified Krachmer grading scale was used for clinical FECD classification. The images were processed using a convolutional neural network for segmentation and morphometric parameter estimation, including effective endothelial cell density, guttae area ratio, coefficient of variation of size, and hexagonality. A mixed-effects model was used to assess relationships between the FECD clinical classification and measured parameters. Results: Of 52 patients (104 eyes) recruited, 76 eyes were analyzed because of the exclusion of 26 eyes for poor quality retroillumination photographs. The study revealed significant discrepancies between artificial intelligence–based and built-in microscope software cell density measurements (1322 ± 489 cells/mm2 vs. 2216 ± 509 cells/mm2, P < 0.001). In the central region, guttae area ratio showed the strongest correlation with modified Krachmer grades (0.60, P < 0.001). In peripheral areas, only guttae area ratio in the inferior region exhibited a marginally significant positive correlation (0.29, P < 0.05). Conclusions: This study confirms the utility of CNNs for precise FECD evaluation through specular microscopy. Guttae area ratio emerges as a compelling morphometric parameter aligning closely with modified Krachmer clinical grading. These findings set the stage for future large-scale studies, with potential applications in the assessment of irreversible corneal edema risk after phacoemulsification in FECD patients, as well as in monitoring novel FECD therapies.8 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2CorneaAssessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Imagesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Fuchs dystrophySpecular microscopyEndothelial cell densityArtificial intelligence,Deep learningLEMBCartagena de IndiasInvestigadoresMatthaei M, Hribek A, Clahsen T, et al. Fuchs endothelial corneal dystrophy: clinical, genetic, pathophysiologic, and therapeutic aspects. Annu Rev Vis Sci. 2019;5:151–175.Ali M, Cho K, Srikumaran D. Fuchs dystrophy and cataract: diagnosis, evaluation and treatment. Ophthalmol Ther. 2023;12:691–704.Margo CE, Espana EM. Corneal endothelial dystrophy. In: Margo CE, Cheng JY, Espana EM, et al., eds. Ophthalmic Pathology: The Evolution of Current Concepts. Cambridge, MA: Academic Press, 2023:147–151.Galvis V, Tello A, Laiton AN, et al. Indications and techniques of corneal transplantation in a referral center in Colombia, South America (2012–2016). Int Ophthalmol. 2019;39:1723–1733.Zhang J, Patel DV. The pathophysiology of Fuchs' endothelial dystrophy—a review of molecular and cellular insights. Exp Eye Res. 2015;130:97–105.Rodrigues MM, Krachmer JH, Hackett J, et al. . Fuchs' corneal dystrophy: a clinicopathologic study of the variation in corneal edema. Ophthalmology. 1986;93:789–796.Hribek A, Clahsen T, Horstmann J, et al. . Fibrillar layer as a marker for areas of pronounced corneal endothelial cell loss in advanced Fuchs endothelial corneal dystrophy. Am J Ophthalmol. 2021;222:292–301Schrems-Hoesl L, Schrems W, Cruzat A, et al. . Cellular and subbasal nerve alterations in early stage Fuchs' endothelial corneal dystrophy: an in vivo confocal microscopy study. Eye. 2013;27:42–49.Patel SV, Hodge DO, Treichel EJ, et al. . Visual function in pseudophakic eyes with Fuchs' endothelial corneal dystrophy. Am J Ophthalmol. 2022;239:98–107Mishima S. Clinical investigations on the corneal endothelium: XXXVIII Edward Jackson Memorial Lecture. Am J Ophthalmol. 1982;93:1–29.Cornea Donor Study Investigator Group, Gal RL, Dontchev M, et al. . The effect of donor age on corneal transplantation outcome: results of the cornea donor study. Ophthalmology. 2008;115:620–626.e6Hoffer KJ. Corneal decomposition after corneal endothelium cell count. Am J Ophthalmol. 1979;87:252–253.Kocaba V, Katikireddy KR, Gipson I, et al. . Association of the gutta-induced microenvironment with corneal endothelial cell behavior and demise in Fuchs endothelial corneal dystrophy. JAMA Ophthalmol. 2018;136:886–892.Krachmer JH, Purcell JJ, Young CW, et al. . Corneal endothelial dystrophy: a study of 64 families. Arch Ophthalmol. 1978;96:2036–2039.Louttit MD, Kopplin LJ, Igo RP, et al. . A multicenter study to map genes for Fuchs endothelial corneal dystrophy: baseline characteristics and heritability. Cornea. 2012;31:26–35.Repp DJ, Hodge DO, Baratz KH, et al. . Fuchs' endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio. Ophthalmology. 2013;120:687–694.Mingo-Botín D, Arnalich-Montiel F, Couceiro de Juan A, et al. . Repeatability and intersession reproducibility of pentacam corneal thickness maps in Fuchs dystrophy and endothelial keratoplasty. Cornea. 2018;37:987–992.Patel SV, Hodge DO, Treichel EJ, et al. . Predicting the prognosis of Fuchs endothelial corneal dystrophy by using Scheimpflug tomography. Ophthalmology. 2020;127:315–323Sun SY, Wacker K, Baratz KH, et al. . Determining subclinical edema in Fuchs endothelial corneal dystrophy: revised classification using Scheimpflug tomography for preoperative assessment. Ophthalmology. 2019;126:195–204Yasukura Y, Oie Y, Kawasaki R, et al. . New severity grading system for Fuchs endothelial corneal dystrophy using anterior segment optical coherence tomography. Acta Ophthalmol. 2021;99:e914–e921.Aggarwal S, Cavalcanti BM, Regali L, et al. . In vivo confocal microscopy shows alterations in nerve density and dendritiform cell density in Fuchs' endothelial corneal dystrophy. Am J Ophthalmol. 2018;196:136–144.Ong Tone S, Bruha MJ, Böhm M, et al. . Regional variability in corneal endothelial cell density between guttae and non-guttae areas in Fuchs endothelial corneal dystrophy. Can J Ophthalmol. 2019;54:570–576Li Z, Wang L, Wu X, et al. . Artificial intelligence in ophthalmology: the path to the real-world clinic. Cell Rep Med. 2023;4:101095.Sierra JS, Pineda J, Rueda D, et al. . Corneal endothelium assessment in specular microscopy images with Fuchs' dystrophy via deep regression of signed distance maps. Biomed Opt Express. 2023;14:335–351McLaren JW, Bachman LA, Kane KM, et al. . Objective assessment of the corneal endothelium in Fuchs' endothelial dystrophy. Invest Ophthalmol Vis Sci. 2014;55:1184–1190Fujimoto H, Maeda N, Soma T, et al. . Quantitative regional differences in corneal endothelial abnormalities in the central and peripheral zones in Fuchs' endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2014;55:5090–5098Eghrari AO, Garrett BS, Mumtaz AA, et al. . Retroillumination photography analysis enhances clinical definition of severe Fuchs corneal dystrophy. Cornea. 2015;34:1623–1626.Eghrari AO, Mumtaz AA, Garrett B, et al. . Automated retroillumination photography analysis for objective assessment of Fuchs corneal dystrophy. Cornea. 2017;36:44–47.Hamlett A, Ryan L, Serrano-Trespalacios P, et al. . Mixed models for assessing correlation in the presence of replication. J Air Waste Manag Assoc. 2003;53:442–450.Ying G, Maguire MG, Glynn R, et al. . Tutorial on biostatistics: statistical analysis for correlated binary eye data. Ophthalmic Epidemiol. 2018;25:1–12.Syed ZA, Tran JA, Jurkunas UV. Peripheral endothelial cell count is a predictor of disease severity in advanced Fuchs' endothelial corneal dystrophy. Cornea. 2017;36:1166–1171.Sierra J, Pineda J, Volpe G, et al. . Code for corneal endothelium assessment in specular microscopy images with Fuchs' dystrophy via deep regression of signed distance maps. GitHub; 2022. Available at: 10.5281/zenodo.7378507.Hemaya M, Hemaya M, Habeeb A. Evaluating keratoplasty for Fuchs' endothelial corneal dystrophy: a literature review. Cureus. 2023;15:e33639.Li Z, Duan H, Jia Y, et al. . Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest. 2022;132:e146658.Yuan A, Pineda R. Regenerative medicine in Fuchs' endothelial corneal dystrophy. Taiwan J Ophthalmol. 2021;11:122–131http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALassessing_fuchs_corneal_endothelial_dystrophy.3.pdfassessing_fuchs_corneal_endothelial_dystrophy.3.pdfMain articleapplication/pdf707800https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/1/assessing_fuchs_corneal_endothelial_dystrophy.3.pdfd1bbc07a039ae3e2745159b99bd510ecMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTassessing_fuchs_corneal_endothelial_dystrophy.3.pdf.txtassessing_fuchs_corneal_endothelial_dystrophy.3.pdf.txtExtracted texttext/plain37806https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/4/assessing_fuchs_corneal_endothelial_dystrophy.3.pdf.txt309f3a180daaee008632d4cfc0c753a6MD54THUMBNAILassessing_fuchs_corneal_endothelial_dystrophy.3.pdf.jpgassessing_fuchs_corneal_endothelial_dystrophy.3.pdf.jpgGenerated Thumbnailimage/jpeg9807https://repositorio.utb.edu.co/bitstream/20.500.12585/12706/5/assessing_fuchs_corneal_endothelial_dystrophy.3.pdf.jpg83108603f2db42551d7eb63f503002f2MD5520.500.12585/12706oai:repositorio.utb.edu.co:20.500.12585/127062024-08-13 00:15:24.962Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=