Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design
A bilinear PI control based on passivity theory for the adequate integration of distributed energy resources (DERs) in ac microgrids is presented in this paper. DERs are integrated into the grid by voltage source converters (VSC), the most common and suitable technology for this type of application....
- Autores:
-
Gil-González, Walter
Montoya, Oscar D.
Garcés, Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9504
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9504
https://www.tandfonline.com/doi/abs/10.1080/15325008.2020.1793831
- Palabra clave:
- Bilinear PI control
Lyapunov’s stability
Photovoltaic generator
AC microgrids
Supercapacitor energy storage system
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_103aab167a7ba86b7a4460ae71b9cbd9 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9504 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design |
title |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design |
spellingShingle |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design Bilinear PI control Lyapunov’s stability Photovoltaic generator AC microgrids Supercapacitor energy storage system |
title_short |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design |
title_full |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design |
title_fullStr |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design |
title_full_unstemmed |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design |
title_sort |
Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design |
dc.creator.fl_str_mv |
Gil-González, Walter Montoya, Oscar D. Garcés, Alejandro |
dc.contributor.author.none.fl_str_mv |
Gil-González, Walter Montoya, Oscar D. Garcés, Alejandro |
dc.subject.keywords.spa.fl_str_mv |
Bilinear PI control Lyapunov’s stability Photovoltaic generator AC microgrids Supercapacitor energy storage system |
topic |
Bilinear PI control Lyapunov’s stability Photovoltaic generator AC microgrids Supercapacitor energy storage system |
description |
A bilinear PI control based on passivity theory for the adequate integration of distributed energy resources (DERs) in ac microgrids is presented in this paper. DERs are integrated into the grid by voltage source converters (VSC), the most common and suitable technology for this type of application. The proposed control guarantees asymptotically stable operation for the dynamical system under closed-loop operating scenarios via Hamiltonian and Lyapunov formulations. ZP load models and π-model of the transmission lines are considered in the stability analysis of the microgrid. Conventional PI control is also implemented for comparative purposes. Simulation results in Matlab/Simulink demonstrate the effectiveness and stability of the proposed control’s performance in a radial microgrid composed of a photovoltaic generator, a supercapacitor energy storage (SCES) system and unbalanced loads. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-10-30T14:49:11Z |
dc.date.available.none.fl_str_mv |
2020-10-30T14:49:11Z |
dc.date.issued.none.fl_str_mv |
2020-07-30 |
dc.date.submitted.none.fl_str_mv |
2020-10-28 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Walter Gil-González, Oscar D. Montoya & Alejandro Garces (2020) Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design, Electric Power Components and Systems, 48:4-5, 447-458, DOI: 10.1080/15325008.2020.1793831 |
dc.identifier.issn.none.fl_str_mv |
1532-5008 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9504 |
dc.identifier.url.none.fl_str_mv |
https://www.tandfonline.com/doi/abs/10.1080/15325008.2020.1793831 |
dc.identifier.doi.none.fl_str_mv |
10.1080/15325008.2020.1793831 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Walter Gil-González, Oscar D. Montoya & Alejandro Garces (2020) Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design, Electric Power Components and Systems, 48:4-5, 447-458, DOI: 10.1080/15325008.2020.1793831 1532-5008 10.1080/15325008.2020.1793831 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9504 https://www.tandfonline.com/doi/abs/10.1080/15325008.2020.1793831 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.none.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.sede.spa.fl_str_mv |
Campus Tecnológico |
dc.source.spa.fl_str_mv |
Electric Power Components and Systems Volume 48, 2020 - Issue 4-5 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/1/41.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/3/41.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/4/41.pdf.jpg |
bitstream.checksum.fl_str_mv |
fdfd2a2062f885cd1928cf81dea3ab08 e20ad307a1c5f3f25af9304a7a7c86b6 168fa521099b315bb6c7ae56280420c5 f1b6dd39e3f89ced35ee88eedcccd0a7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021758617911296 |
spelling |
Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Montoya, Oscar D.d48a6b1c-a97a-4bbd-8303-dca6fbe71386Garcés, Alejandro1f6fb709-fba4-4fc8-9381-be1f0ca81b822020-10-30T14:49:11Z2020-10-30T14:49:11Z2020-07-302020-10-28Walter Gil-González, Oscar D. Montoya & Alejandro Garces (2020) Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design, Electric Power Components and Systems, 48:4-5, 447-458, DOI: 10.1080/15325008.2020.17938311532-5008https://hdl.handle.net/20.500.12585/9504https://www.tandfonline.com/doi/abs/10.1080/15325008.2020.179383110.1080/15325008.2020.1793831Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA bilinear PI control based on passivity theory for the adequate integration of distributed energy resources (DERs) in ac microgrids is presented in this paper. DERs are integrated into the grid by voltage source converters (VSC), the most common and suitable technology for this type of application. The proposed control guarantees asymptotically stable operation for the dynamical system under closed-loop operating scenarios via Hamiltonian and Lyapunov formulations. ZP load models and π-model of the transmission lines are considered in the stability analysis of the microgrid. Conventional PI control is also implemented for comparative purposes. Simulation results in Matlab/Simulink demonstrate the effectiveness and stability of the proposed control’s performance in a radial microgrid composed of a photovoltaic generator, a supercapacitor energy storage (SCES) system and unbalanced loads.Ministerio de Ciencia11 páginasapplication/pdfengElectric Power Components and Systems Volume 48, 2020 - Issue 4-5Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Designinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Bilinear PI controlLyapunov’s stabilityPhotovoltaic generatorAC microgridsSupercapacitor energy storage systeminfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasCampus TecnológicoO.Ellabban, H.Abu-Rub and F.Blaabjerg , “Renewable energy resources: Current status, future prospects and their enabling technology,” Renew. Sustain. Energy Rev. , vol. 39, pp. 748–764, 2014. DOI: 10.1016/j.rser.2014.07.113.F.Katiraei, R.Iravani, N.Hatziargyriou and A.Dimeas , “Microgrids management,” IEEE Power Energy Mag. , vol. 6, no. 3, pp. 54–65, 2008. DOI: 10.1109/MPE.2008.918702.A.Keyhani , Design of Smart Power Grid Renewable Energy Systems . United States of America: John Wiley & Sons, 2016.E.Planas, J.Andreu, J. I.Gárate, I. M.de Alegría and E.Ibarra , “AC and DC technology in microgrids: A review, Renew,” Sustain. Energy Rev. , vol. 43, pp. 726–749, 2015. DOI: 10.1016/j.rser.2014.11.067.S. M.Kaviri, M.Pahlevani, P.Jain and A.Bakhshai , “A review of AC microgrid control methods,” in 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), IEEE, 2017, pp. 1–8. DOI: 10.1109/PEDG.2017.7972498.O. D. M.Giraldo, W. J. G.González, A. G.Ruiz, A. E.Mejía and L. F. G.Noreña , “Nonlinear control for battery energy storage systems in power grids,” in 2018 IEEE Green Technologies Conference (GreenTech), IEEE, 2018, pp. 65–70.X.Luo, J.Wang, M.Dooner and J.Clarke , “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Appl. Energy , vol. 137, pp. 511–536, 2015. DOI: 10.1016/j.apenergy.2014.09.081.H.Han, X.Hou, J.Yang, J.Wu, M.Su and J. M.Guerrero , “Review of power sharing control strategies for islanding operation of AC microgrids,” IEEE Trans. Smart Grid , vol. 7, no. 1, pp. 200–215, 2016. DOI: 10.1109/TSG.2015.2434849.J. M.Guerrero, P. C.Loh, T.-L.Lee and M.Chandorkar , “Advanced control architectures for intelligent microgrids–Part II: Power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Ind. Electron. , vol. 60, no. 4, pp. 1263–1270, 2013. DOI: 10.1109/TIE.2012.2196889.X.Wang, J. M.Guerrero and Z.Chen , “Control of grid interactive AC microgrids,” in 2010 IEEE International Symposium on Industrial Electronics, IEEE, 2010, pp. 2211–2216.V.Nasirian, Q.Shafiee, J. M.Guerrero, F. L.Lewis and A.Davoudi , “Droop-free distributed control for AC microgrids,” IEEE Trans. Power Electron. , vol. 31, no. 2, pp. 1600–1617, 2016. DOI: 10.1109/TPEL.2015.2414457.O. D.Montoya, A.Garcés and F. M.Serra , “DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators,” J. Energy Storage , vol. 16, pp. 250–258, 2018. DOI: 10.1016/j.est.2018.01.014.F. M.Serra, C. H. D.Angelo and D. G.Forchetti , “Interconnection and damping assignment control of a three-phase front end converter,” Int. J. Elec. Power , vol. 60, pp. 317–324, 2014. DOI: 10.1016/j.ijepes.2014.03.033.F. M.Serra and C. H. D.Angelo , “IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions,” Electr. Power Syst. Res. , vol. 142, pp. 12–19, 2017. DOI: 10.1016/j.epsr.2016.08.041.O. D.Montoya, W.Gil-González and A.Garces , “Control for EESS in Three–Phase Microgrids Under Time–Domain Reference Frame via PBC Theory,” IEEE Trans. Circuits Syst. II , vol. 66, no. 12, pp. 2007–2011, 2019. DOI: 10.1109/TCSII.2019.2893842.S.Vazquez, J.Rodriguez, M.Rivera, L. G.Franquelo and M.Norambuena , “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Ind. Electron. , vol. 64, no. 2, pp. 935–947, 2017. DOI: 10.1109/TIE.2016.2625238.A.Parisio, E.Rikos and L.Glielmo , “A model predictive control approach to microgrid operation optimization,” IEEE Trans. Contr. Syst. Technol. , vol. 22, no. 5, pp. 1813–1827, 2014. DOI: 10.1109/TCST.2013.2295737.R.Aghatehrani and R.Kavasseri , “Sensitivity-analysis-based sliding mode control for voltage regulation in microgrids,” IEEE Trans. Sustain. Energy , vol. 4, no. 1, pp. 50–57, 2013. DOI: 10.1109/TSTE.2012.2197870.M.Cucuzzella, G. P.Incremona and A.Ferrara , “Design of robust higher order sliding mode control for microgrids,” IEEE J. Emerg. Sel. Topics Circuits Syst. , vol. 5, no. 3, pp. 393–401, 2015. DOI: 10.1109/JETCAS.2015.2450411.G.Kyriakarakos, A. I.Dounis, K. G.Arvanitis and G.Papadakis , “A fuzzy logic energy management system for polygeneration microgrids,” Ren. Energy , vol. 41, pp. 315–327, 2012. DOI: 10.1016/j.renene.2011.11.019.R.Cisneros, M.Pirro, G.Bergna, R.Ortega, G.Ippoliti and M.Molinas , “Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters,” Control Eng. Pract. , vol. 43, pp. 109–119, 2015. DOI: 10.1016/j.conengprac.2015.07.002.R.Teodorescu, M.Liserre and P.Rodriguez , Grid Converters for Photovoltaic and Wind Power Systems . United Kingdom: Wiley-IEEE, Wiley, 2011.S.Golestan, J. M.Guerrero and J. C.Vasquez , “Three-phase PLLs: A review of recent advances,” IEEE Trans. Power Electron. , vol. 32, no. 3, pp. 1894–1907, 2017. DOI: 10.1109/TPEL.2016.2565642.J.Machowski, J. W.Bialek and J. R.Bumby , Power System Dynamics: Stability and Control , 2nd ed. United Kingdom: John Wily & Sons, 2008.O. D.Montoya, A.Garces, S.Avila-Becerril, G.Espinosa-Pérez and F. M.Serra , “Stability analysis of single-phase low-voltage AC microgrids with constant power terminals,” IEEE Trans. Circuits Syst. II , vol. 66, no. 7, pp. 1212–1216, 2019. DOI: 10.1109/TCSII.2018.2878188.IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems—Amendment 1, IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003), 2014, pp. 1–16.W.Gil-González, O. D.Montoya and A.Garces , “Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach,” Int. J. Elec. Power , vol. 110, pp. 588–597, 2019. DOI: 10.1016/j.ijepes.2019.03.042.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL41.pdf41.pdfapplication/pdf122897https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/1/41.pdffdfd2a2062f885cd1928cf81dea3ab08MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT41.pdf.txt41.pdf.txtExtracted texttext/plain929https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/3/41.pdf.txt168fa521099b315bb6c7ae56280420c5MD53THUMBNAIL41.pdf.jpg41.pdf.jpgGenerated Thumbnailimage/jpeg52755https://repositorio.utb.edu.co/bitstream/20.500.12585/9504/4/41.pdf.jpgf1b6dd39e3f89ced35ee88eedcccd0a7MD5420.500.12585/9504oai:repositorio.utb.edu.co:20.500.12585/95042020-11-02 00:52:40.947Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |