Chirp-wave expansion of the electron wavefunctions in atoms

The description of the electron wavefunctions in atoms is generalized to the fractional Fourier series. This method introduces a continuous and infinite number of chirp basis sets with linear variation of the frequency to expand the wavefunctions, in which plane-waves are a special case. The chirp c...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8760
Acceso en línea:
https://hdl.handle.net/20.500.12585/8760
Palabra clave:
Chirp basis set
Chirp expansion of wavefunctions
Chirp series
Fractional Fourier transform
Local gauge transformation
Basis sets
Chirp series
Electron wavefunctions
Fractional Fourier series
Fractional Fourier transforms
Gauge transformation
Infinite numbers
Natural oscillation
Atoms
Fourier series
Electrons
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_0f2151fff143825588f24e0772dff05a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8760
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Chirp-wave expansion of the electron wavefunctions in atoms
title Chirp-wave expansion of the electron wavefunctions in atoms
spellingShingle Chirp-wave expansion of the electron wavefunctions in atoms
Chirp basis set
Chirp expansion of wavefunctions
Chirp series
Fractional Fourier transform
Local gauge transformation
Basis sets
Chirp series
Electron wavefunctions
Fractional Fourier series
Fractional Fourier transforms
Gauge transformation
Infinite numbers
Natural oscillation
Atoms
Fourier series
Electrons
title_short Chirp-wave expansion of the electron wavefunctions in atoms
title_full Chirp-wave expansion of the electron wavefunctions in atoms
title_fullStr Chirp-wave expansion of the electron wavefunctions in atoms
title_full_unstemmed Chirp-wave expansion of the electron wavefunctions in atoms
title_sort Chirp-wave expansion of the electron wavefunctions in atoms
dc.subject.keywords.none.fl_str_mv Chirp basis set
Chirp expansion of wavefunctions
Chirp series
Fractional Fourier transform
Local gauge transformation
Basis sets
Chirp series
Electron wavefunctions
Fractional Fourier series
Fractional Fourier transforms
Gauge transformation
Infinite numbers
Natural oscillation
Atoms
Fourier series
Electrons
topic Chirp basis set
Chirp expansion of wavefunctions
Chirp series
Fractional Fourier transform
Local gauge transformation
Basis sets
Chirp series
Electron wavefunctions
Fractional Fourier series
Fractional Fourier transforms
Gauge transformation
Infinite numbers
Natural oscillation
Atoms
Fourier series
Electrons
description The description of the electron wavefunctions in atoms is generalized to the fractional Fourier series. This method introduces a continuous and infinite number of chirp basis sets with linear variation of the frequency to expand the wavefunctions, in which plane-waves are a special case. The chirp characteristics of each basis set can be adjusted through a single parameter. Thus, the basis set cutoff can be optimized variationally. The approach is tested with the expansion of the electron wavefunctions in atoms, and it is shown that chirp basis sets substantially improve the convergence in the description of the electron density. We have found that the natural oscillations of the electron core states are efficiently described in chirp-waves. © 2013 Elsevier B.V. All rights reserved.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:19Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:19Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Computational and Applied Mathematics; Vol. 263, pp. 218-224
dc.identifier.issn.none.fl_str_mv 0377-0427
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8760
dc.identifier.doi.none.fl_str_mv 10.1016/j.cam.2013.12.016
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Journal of Computational and Applied Mathematics; Vol. 263, pp. 218-224
0377-0427
10.1016/j.cam.2013.12.016
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8760
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84891682706&doi=10.1016%2fj.cam.2013.12.016&partnerID=40&md5=4e245cd1d56a7acb5a11936aedf47cd7
Scopus 35094573000
Scopus 56270896900
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8760/1/DOI10_1016j_cam_2013_12_016.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8760/4/DOI10_1016j_cam_2013_12_016.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8760/5/DOI10_1016j_cam_2013_12_016.pdf.jpg
bitstream.checksum.fl_str_mv ac45952000f449ee631821ec58e880e0
7d658fbc7dbdc31cd58595c734b11979
e1a38684f2532088db9816459740945c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021734361202688
spelling 2019-11-06T19:05:19Z2019-11-06T19:05:19Z2014Journal of Computational and Applied Mathematics; Vol. 263, pp. 218-2240377-0427https://hdl.handle.net/20.500.12585/876010.1016/j.cam.2013.12.016Universidad Tecnológica de BolívarRepositorio UTBThe description of the electron wavefunctions in atoms is generalized to the fractional Fourier series. This method introduces a continuous and infinite number of chirp basis sets with linear variation of the frequency to expand the wavefunctions, in which plane-waves are a special case. The chirp characteristics of each basis set can be adjusted through a single parameter. Thus, the basis set cutoff can be optimized variationally. The approach is tested with the expansion of the electron wavefunctions in atoms, and it is shown that chirp basis sets substantially improve the convergence in the description of the electron density. We have found that the natural oscillations of the electron core states are efficiently described in chirp-waves. © 2013 Elsevier B.V. All rights reserved.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASRecurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84891682706&doi=10.1016%2fj.cam.2013.12.016&partnerID=40&md5=4e245cd1d56a7acb5a11936aedf47cd7Scopus 35094573000Scopus 56270896900Chirp-wave expansion of the electron wavefunctions in atomsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Chirp basis setChirp expansion of wavefunctionsChirp seriesFractional Fourier transformLocal gauge transformationBasis setsChirp seriesElectron wavefunctionsFractional Fourier seriesFractional Fourier transformsGauge transformationInfinite numbersNatural oscillationAtomsFourier seriesElectronsTorres, E.Torres, R.Bloch, F., Über die quantenmechanik der elektronen in kristallgittern (1928) Z. Phys., 52, pp. 555-600Slater, J.C., Wave functions in a periodic potential (1937) Phys. Rev., 51, pp. 846-851Herring, C., A new method for calculating wave functions in crystals (1940) Phys. Rev., 57, pp. 1169-1177Phillips, J.C., Kleinman, L., New method for calculating wave functions in crystals and molecules (1959) Phys. Rev., 116, pp. 287-294Kohanoff, J., (2006) Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods, , Cambridge University PressGygi, F., Adaptive Riemannian metric for plane-wave electronic-structure calculations (1992) Europhys. Lett., 19 (7), p. 617Namias, V., The fractional order Fourier transform and its application to quantum mechanics (1980) J. Inst. Math. Appl., 25, pp. 241-265McBride, A.C., Kerr, F.H., On namias's fractional Fourier transforms (1987) IMA J. Appl. Math., 39 (2), pp. 159-175Ozaktas, H.M., Barshan, B., Mendlovic, D., Onural, L., Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms (1994) J. Opt. Soc. Amer. A, 11 (2), pp. 547-559Pei, S.-C., Yeh, M.-H., Luo, T.-L., Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform (1999) IEEE Trans. Signal Process., 47 (10), pp. 2883-2888Pauli, W., Relativistic field theories of elementary particles (1941) Rev. Modern Phys., 13, pp. 203-232Kohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects (1965) Phys. Rev., 140, pp. 1133-A1138Vosko, S.H., Wilk, L., Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis (1980) Can. J. Phys., 58 (8), pp. 1200-1211Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D., Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients (1992) Rev. Modern Phys., 64, pp. 1045-1097http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_1016j_cam_2013_12_016.pdfapplication/pdf687201https://repositorio.utb.edu.co/bitstream/20.500.12585/8760/1/DOI10_1016j_cam_2013_12_016.pdfac45952000f449ee631821ec58e880e0MD51TEXTDOI10_1016j_cam_2013_12_016.pdf.txtDOI10_1016j_cam_2013_12_016.pdf.txtExtracted texttext/plain18993https://repositorio.utb.edu.co/bitstream/20.500.12585/8760/4/DOI10_1016j_cam_2013_12_016.pdf.txt7d658fbc7dbdc31cd58595c734b11979MD54THUMBNAILDOI10_1016j_cam_2013_12_016.pdf.jpgDOI10_1016j_cam_2013_12_016.pdf.jpgGenerated Thumbnailimage/jpeg94029https://repositorio.utb.edu.co/bitstream/20.500.12585/8760/5/DOI10_1016j_cam_2013_12_016.pdf.jpge1a38684f2532088db9816459740945cMD5520.500.12585/8760oai:repositorio.utb.edu.co:20.500.12585/87602020-10-23 04:48:42.923Repositorio Institucional UTBrepositorioutb@utb.edu.co