Photovoltaic power predictor module based on historical production and weather conditions data

In recent years the demand for electrical energy has increased significantly. Usually, the electrical grid covers this demand. However, this fuel energy is known for its significant carbon footprint. For that reason, different mechanisms to bring cleaner energies have been explored, like hydraulic,...

Full description

Autores:
Martinez, Elizabeth
Cuadrado, Juan
Martinez-Santos, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12588
Acceso en línea:
https://hdl.handle.net/20.500.12585/12588
https://doi.org/10.1007/978-3-031-20611-5_38
Palabra clave:
Condition monitoring
Deep learning
Energy production
Forecasting
Photo voltaic
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_0df4224e6e7e67d5ac73eb86d8f9be2c
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12588
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Photovoltaic power predictor module based on historical production and weather conditions data
title Photovoltaic power predictor module based on historical production and weather conditions data
spellingShingle Photovoltaic power predictor module based on historical production and weather conditions data
Condition monitoring
Deep learning
Energy production
Forecasting
Photo voltaic
LEMB
title_short Photovoltaic power predictor module based on historical production and weather conditions data
title_full Photovoltaic power predictor module based on historical production and weather conditions data
title_fullStr Photovoltaic power predictor module based on historical production and weather conditions data
title_full_unstemmed Photovoltaic power predictor module based on historical production and weather conditions data
title_sort Photovoltaic power predictor module based on historical production and weather conditions data
dc.creator.fl_str_mv Martinez, Elizabeth
Cuadrado, Juan
Martinez-Santos, Juan Carlos
dc.contributor.author.none.fl_str_mv Martinez, Elizabeth
Cuadrado, Juan
Martinez-Santos, Juan Carlos
dc.subject.keywords.spa.fl_str_mv Condition monitoring
Deep learning
Energy production
Forecasting
Photo voltaic
topic Condition monitoring
Deep learning
Energy production
Forecasting
Photo voltaic
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In recent years the demand for electrical energy has increased significantly. Usually, the electrical grid covers this demand. However, this fuel energy is known for its significant carbon footprint. For that reason, different mechanisms to bring cleaner energies have been explored, like hydraulic, wind, thermal, and one of the most popular solar energy. Although solar energy is abundant and environmentally friendly, the photovoltaic energy that comes from the sun, solar production is subject to different external perturbations, such as environmental conditions. Therefore it has been necessary to develop other methods based on statistics, machine learning, or deep learning to make solar forecasting and predict production and weather conditions. Specifically, this work proposes an evaluation of three different deep learning models to predict irradiance, temperature, and production of a photovoltaic system located in the city of Cartagena, Colombia. Those are irradiance and temperature using the historical data on production and weather conditions. This data has been registered on a web platform for seven months, from January 1, 2022, until June 28, 2022.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-22
dc.date.accessioned.none.fl_str_mv 2023-12-11T12:33:25Z
dc.date.available.none.fl_str_mv 2023-12-11T12:33:25Z
dc.date.submitted.none.fl_str_mv 2023-12-09
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Martinez, E., Cuadrado, J., & Martinez-Santos, J. C. (2022, November). Photovoltaic Power Predictor Module Based on Historical Production and Weather Conditions Data. In Workshop on Engineering Applications (pp. 461-472). Cham: Springer Nature Switzerland.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12588
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-031-20611-5_38
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Martinez, E., Cuadrado, J., & Martinez-Santos, J. C. (2022, November). Photovoltaic Power Predictor Module Based on Historical Production and Weather Conditions Data. In Workshop on Engineering Applications (pp. 461-472). Cham: Springer Nature Switzerland.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12588
https://doi.org/10.1007/978-3-031-20611-5_38
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.discipline.spa.fl_str_mv Ingeniería de Sistemas y Computación
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/1/Photovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/3/Photovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/4/Photovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.jpg
bitstream.checksum.fl_str_mv 938b603aaf9c8ab6e1383d039a5a65e9
e20ad307a1c5f3f25af9304a7a7c86b6
894d93ab3801461e32b7244c14e1c17c
6ec40bc6b8903b2028b5e90841eb6b43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021775365767168
spelling Martinez, Elizabeth4ebda059-55c6-4e72-8ce5-81181da731b4Cuadrado, Juan73b693c6-9993-4025-9268-0f1bbe13b105Martinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe773182023-12-11T12:33:25Z2023-12-11T12:33:25Z2022-11-222023-12-09Martinez, E., Cuadrado, J., & Martinez-Santos, J. C. (2022, November). Photovoltaic Power Predictor Module Based on Historical Production and Weather Conditions Data. In Workshop on Engineering Applications (pp. 461-472). Cham: Springer Nature Switzerland.https://hdl.handle.net/20.500.12585/12588https://doi.org/10.1007/978-3-031-20611-5_38Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn recent years the demand for electrical energy has increased significantly. Usually, the electrical grid covers this demand. However, this fuel energy is known for its significant carbon footprint. For that reason, different mechanisms to bring cleaner energies have been explored, like hydraulic, wind, thermal, and one of the most popular solar energy. Although solar energy is abundant and environmentally friendly, the photovoltaic energy that comes from the sun, solar production is subject to different external perturbations, such as environmental conditions. Therefore it has been necessary to develop other methods based on statistics, machine learning, or deep learning to make solar forecasting and predict production and weather conditions. Specifically, this work proposes an evaluation of three different deep learning models to predict irradiance, temperature, and production of a photovoltaic system located in the city of Cartagena, Colombia. Those are irradiance and temperature using the historical data on production and weather conditions. This data has been registered on a web platform for seven months, from January 1, 2022, until June 28, 2022.12 páginasapplication/pdfengPhotovoltaic power predictor module based on historical production and weather conditions datainfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_3248Condition monitoringDeep learningEnergy productionForecastingPhoto voltaicLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasIngeniería de Sistemas y ComputaciónPúblico generalF. Dincer, “The analysis on wind energy electricity generation status, potential and policies in the world,” Renewable and sustainable energy reviews, vol. 15, no. 9, pp. 5135–5142, 2011.P. E. Brockway, A. Owen, L. I. Brand-Correa, and L. Hardt, “Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renew able energy sources,” Nature Energy, vol. 4, no. 7, pp. 612–621, 2019.R. Aichele and G. Felbermayr, “Kyoto and the carbon footprint of nations,” Jour nal of Environmental Economics and Management, vol. 63, no. 3, pp. 336–354, 2012.K. Li, H. Bian, C. Liu, D. Zhang, and Y. Yang, “Comparison of geothermal with solar and wind power generation systems,” Renewable and Sustainable Energy Re views, vol. 42, pp. 1464–1474, 2015.R. Li, H.-N. Wang, H. He, Y.-M. Cui, and Z.-L. Du, “Support vector machine combined with k-nearest neighbors for solar flare forecasting,” Chinese Journal of Astronomy and Astrophysics, vol. 7, no. 3, p. 441, 2007.F. O. Hocao˘glu, O. N. Gerek, and M. Kurban, “Hourly solar radiation forecasting ¨ using optimal coefficient 2-d linear filters and feed-forward neural networks,” Solar energy, vol. 82, no. 8, pp. 714–726, 2008.Z. Pang, F. Niu, and Z. O’Neill, “Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons,” Renewable Energy, vol. 156, pp. 279–289, 2020.Y. Jung, J. Jung, B. Kim, and S. Han, “Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar pv facilities: Case study of south korea,” Journal of Cleaner Production, vol. 250, p. 119476, 2020.. G. A. de Melo, D. N. Sugimoto, P. M. Tasinaffo, A. H. M. Santos, A. M. Cunha, and L. A. V. Dias, “A new approach to river flow forecasting: Lstm and gru multivariate models,” IEEE Latin America Transactions, vol. 17, no. 12, pp. 1978–1986, 2019.M. Ajith and M. Mart´ınez-Ram´on, “Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data,” Applied Energy, vol. 294, p. 117014, 2021.H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “A review of deep learning for renewable energy forecasting,” Energy Conversion and Management, vol. 198, p. 111799, 2019.W. Li, H. Wu, N. Zhu, Y. Jiang, J. Tan, and Y. Guo, “Prediction of dissolved oxy gen in a fishery pond based on gated recurrent unit (gru),” Information Processing in Agriculture, vol. 8, no. 1, pp. 185–193, 2021.T. Yang, L. Zhao, W. Li, and A. Y. Zomaya, “Reinforcement learning in sustainable energy and electric systems: A survey,” Annual Reviews in Control, vol. 49, pp. 145– 163, 2020K. Cho, B. Van Merri¨enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014http://purl.org/coar/resource_type/c_c94fORIGINALPhotovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdfPhotovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdfapplication/pdf3183765https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/1/Photovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf938b603aaf9c8ab6e1383d039a5a65e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTPhotovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.txtPhotovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.txtExtracted texttext/plain25480https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/3/Photovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.txt894d93ab3801461e32b7244c14e1c17cMD53THUMBNAILPhotovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.jpgPhotovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.jpgGenerated Thumbnailimage/jpeg4925https://repositorio.utb.edu.co/bitstream/20.500.12585/12588/4/Photovoltaic_Power_Predictor_Module_based_on_Historical_Production_and_Weather_Conditions_Data_WEA_2022.pdf.jpg6ec40bc6b8903b2028b5e90841eb6b43MD5420.500.12585/12588oai:repositorio.utb.edu.co:20.500.12585/125882023-12-12 00:00:35.8Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=