Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory
This brief presents a general form of designing passivity-based controllers for electrical energy storage systems (EESS) in three-phase microgrids (TP-MGs) under time-domain reference frame. The control strategy proposed in this brief use the Clark's transformation known as αβ reference frame,...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8862
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8862
- Palabra clave:
- Active and reactive power control
Bilinear structure
Eelectrical energy storage systems
Hamiltonian formulation
Laypunov's stability
Passivity-based control theory
Control theory
Controllers
Electric power system control
Energy storage
Hamiltonians
MATLAB
Reactive power
Two term control systems
Active and reactive power controls
Dynamical performance
Electrical energy storage systems
Hamiltonian formulations
Matlab/Simulink software
Passivity based control
Passivity-based controllers
Proportional-integral control
Power control
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_0dc86731ff91692790293e2c2a5b7949 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8862 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory |
title |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory |
spellingShingle |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory Active and reactive power control Bilinear structure Eelectrical energy storage systems Hamiltonian formulation Laypunov's stability Passivity-based control theory Control theory Controllers Electric power system control Energy storage Hamiltonians MATLAB Reactive power Two term control systems Active and reactive power controls Dynamical performance Electrical energy storage systems Hamiltonian formulations Matlab/Simulink software Passivity based control Passivity-based controllers Proportional-integral control Power control |
title_short |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory |
title_full |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory |
title_fullStr |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory |
title_full_unstemmed |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory |
title_sort |
Control for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theory |
dc.subject.keywords.none.fl_str_mv |
Active and reactive power control Bilinear structure Eelectrical energy storage systems Hamiltonian formulation Laypunov's stability Passivity-based control theory Control theory Controllers Electric power system control Energy storage Hamiltonians MATLAB Reactive power Two term control systems Active and reactive power controls Dynamical performance Electrical energy storage systems Hamiltonian formulations Matlab/Simulink software Passivity based control Passivity-based controllers Proportional-integral control Power control |
topic |
Active and reactive power control Bilinear structure Eelectrical energy storage systems Hamiltonian formulation Laypunov's stability Passivity-based control theory Control theory Controllers Electric power system control Energy storage Hamiltonians MATLAB Reactive power Two term control systems Active and reactive power controls Dynamical performance Electrical energy storage systems Hamiltonian formulations Matlab/Simulink software Passivity based control Passivity-based controllers Proportional-integral control Power control |
description |
This brief presents a general form of designing passivity-based controllers for electrical energy storage systems (EESS) in three-phase microgrids (TP-MGs) under time-domain reference frame. The control strategy proposed in this brief use the Clark's transformation known as αβ reference frame, avoiding to use phase-locked loop systems, which allows improving the dynamical performance in the energy storage devices. Passivity-based control guarantees stable operating conditions in the sense of Lyapunov for each EESS for different grid operation scenarios in the TP-MG. The design of the controllers is made by using passivity-based control (PBC) theory in conjunction to the dynamics of the error approach. A comparison to classical proportional-integral control method is used to show the applicability of the PBC approach presented in this brief. Simulation results are conducted via MATLAB/Simulink software. © 2004-2012 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2007-2011 |
dc.identifier.issn.none.fl_str_mv |
15497747 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8862 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TCSII.2019.2893842 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57191493648 36449223500 |
identifier_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2007-2011 15497747 10.1109/TCSII.2019.2893842 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57191493648 36449223500 |
url |
https://hdl.handle.net/20.500.12585/8862 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067621075&doi=10.1109%2fTCSII.2019.2893842&partnerID=40&md5=ebbfc3f65f41375b5a7905d5110eaefd |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8862/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021728429408256 |
spelling |
2020-03-26T16:32:31Z2020-03-26T16:32:31Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 12; pp. 2007-201115497747https://hdl.handle.net/20.500.12585/886210.1109/TCSII.2019.2893842Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364836449223500This brief presents a general form of designing passivity-based controllers for electrical energy storage systems (EESS) in three-phase microgrids (TP-MGs) under time-domain reference frame. The control strategy proposed in this brief use the Clark's transformation known as αβ reference frame, avoiding to use phase-locked loop systems, which allows improving the dynamical performance in the energy storage devices. Passivity-based control guarantees stable operating conditions in the sense of Lyapunov for each EESS for different grid operation scenarios in the TP-MG. The design of the controllers is made by using passivity-based control (PBC) theory in conjunction to the dynamics of the error approach. A comparison to classical proportional-integral control method is used to show the applicability of the PBC approach presented in this brief. Simulation results are conducted via MATLAB/Simulink software. © 2004-2012 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITIManuscript received December 7, 2018; accepted January 14, 2019. Date of publication January 18, 2019; date of current version December 6, 2019. This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015. This brief was recommended by Associate Editor D. Giaouris. (Corresponding author: Oscar Danilo Montoya.) O. D. Montoya is with the Program of Electric and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: o.d.montoyagiraldo@ieee.org).Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067621075&doi=10.1109%2fTCSII.2019.2893842&partnerID=40&md5=ebbfc3f65f41375b5a7905d5110eaefdControl for EESS in Three-Phase Microgrids under Time-Domain Reference Frame via PBC Theoryinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Active and reactive power controlBilinear structureEelectrical energy storage systemsHamiltonian formulationLaypunov's stabilityPassivity-based control theoryControl theoryControllersElectric power system controlEnergy storageHamiltoniansMATLABReactive powerTwo term control systemsActive and reactive power controlsDynamical performanceElectrical energy storage systemsHamiltonian formulationsMatlab/Simulink softwarePassivity based controlPassivity-based controllersProportional-integral controlPower controlMontoya O.D.Gil-González W.Garces A.Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Gil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) J. Energy Stor., 18, pp. 459-466. , AugOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380. , SepMontoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Stor., 16, pp. 259-268. , AprGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J. Energy Stor., 16, pp. 250-258. , AprWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5. , OctMontoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (12), pp. 2003-2007. , DecMontoya, O.D., Gil-González, W., Garces, A., SCES integration in power grids: A PBC approach under abc, αβ0 and dq0 reference frames (2018) Proc. IEEE PES Transm. Distrib. Conf. Exhibit. Latin America (T&D-LA), pp. 1-5Cisneros, R., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119. , OctMufti, M.D., Iqbal, S.J., Lone, S.A., Ain, Q., Supervisory adaptive predictive control scheme for supercapacitor energy storage system (2015) IEEE Syst. J., 9 (3), pp. 1020-1030. , SepSingh, B., Shahani, D.T., Verma, A.K., Neural network controlled grid interfaced solar photovoltaic power generation (2014) IET Power Electron., 7 (3), pp. 614-626. , MarKarimipour, D., Salmasi, F.R., Stability analysis of ac microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (7), pp. 696-700. , JulAvila-Becerril, S., Espinosa-Pérez, G., Fernandez, P., Dynamic characterization of typical electrical circuits via structural properties (2016) Math. Problems Eng., 2016, pp. 1-13. , Jul., Art. no. 7870462http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8862/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8862oai:repositorio.utb.edu.co:20.500.12585/88622021-02-02 14:28:52.651Repositorio Institucional UTBrepositorioutb@utb.edu.co |