Modeling and control of a small hydro-power plant for a DC microgrid
This paper presents the modeling and control of a small hydro-power plant (SHP) for a DC microgrid based on passivity theory. The SHP is made up of a turbine, a permanent magnet synchronous generator (PMSG), a voltage source converter and a DC microgrid. The electrical, mechanical and hydraulic dyna...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9072
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9072
- Palabra clave:
- DC microgrid
Passivity-based control
Reasonable assumptions
Small hydro-power plant
Controllers
Hydraulic motors
Hydroelectric power
Permanent magnets
Robustness (control systems)
Synchronous generators
Dc microgrid
Modeling and control
Non-linear controllers
Passivity based control
Permanent magnet synchronous generator
Reasonable assumptions
Small hydro power plants
Voltage source converters
Hydroelectric power plants
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_0d6f564a0c90fe8a6a843d0f781d6ce7 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9072 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Modeling and control of a small hydro-power plant for a DC microgrid |
title |
Modeling and control of a small hydro-power plant for a DC microgrid |
spellingShingle |
Modeling and control of a small hydro-power plant for a DC microgrid DC microgrid Passivity-based control Reasonable assumptions Small hydro-power plant Controllers Hydraulic motors Hydroelectric power Permanent magnets Robustness (control systems) Synchronous generators Dc microgrid Modeling and control Non-linear controllers Passivity based control Permanent magnet synchronous generator Reasonable assumptions Small hydro power plants Voltage source converters Hydroelectric power plants |
title_short |
Modeling and control of a small hydro-power plant for a DC microgrid |
title_full |
Modeling and control of a small hydro-power plant for a DC microgrid |
title_fullStr |
Modeling and control of a small hydro-power plant for a DC microgrid |
title_full_unstemmed |
Modeling and control of a small hydro-power plant for a DC microgrid |
title_sort |
Modeling and control of a small hydro-power plant for a DC microgrid |
dc.subject.keywords.none.fl_str_mv |
DC microgrid Passivity-based control Reasonable assumptions Small hydro-power plant Controllers Hydraulic motors Hydroelectric power Permanent magnets Robustness (control systems) Synchronous generators Dc microgrid Modeling and control Non-linear controllers Passivity based control Permanent magnet synchronous generator Reasonable assumptions Small hydro power plants Voltage source converters Hydroelectric power plants |
topic |
DC microgrid Passivity-based control Reasonable assumptions Small hydro-power plant Controllers Hydraulic motors Hydroelectric power Permanent magnets Robustness (control systems) Synchronous generators Dc microgrid Modeling and control Non-linear controllers Passivity based control Permanent magnet synchronous generator Reasonable assumptions Small hydro power plants Voltage source converters Hydroelectric power plants |
description |
This paper presents the modeling and control of a small hydro-power plant (SHP) for a DC microgrid based on passivity theory. The SHP is made up of a turbine, a permanent magnet synchronous generator (PMSG), a voltage source converter and a DC microgrid. The electrical, mechanical and hydraulic dynamics in the mathematical model of the SHP are considered. We employ a nonlinear controller based on passivity, whose stability is guaranteed under practically reasonable assumptions. Our simulation results show better performance of the proposed controller when compared with a PI controller in all of the scenarios that were considered. © 2019 Elsevier B.V. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:53Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:53Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Electric Power Systems Research; Vol. 180 |
dc.identifier.issn.none.fl_str_mv |
03787796 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9072 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.epsr.2019.106104 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 56919564100 36449223500 |
identifier_str_mv |
Electric Power Systems Research; Vol. 180 03787796 10.1016/j.epsr.2019.106104 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 56919564100 36449223500 |
url |
https://hdl.handle.net/20.500.12585/9072 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075434843&doi=10.1016%2fj.epsr.2019.106104&partnerID=40&md5=c817713e3c712e1babd6cf339a24e837 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9072/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021663248875520 |
spelling |
2020-03-26T16:32:53Z2020-03-26T16:32:53Z2020Electric Power Systems Research; Vol. 18003787796https://hdl.handle.net/20.500.12585/907210.1016/j.epsr.2019.106104Universidad Tecnológica de BolívarRepositorio UTB571914936485691956410036449223500This paper presents the modeling and control of a small hydro-power plant (SHP) for a DC microgrid based on passivity theory. The SHP is made up of a turbine, a permanent magnet synchronous generator (PMSG), a voltage source converter and a DC microgrid. The electrical, mechanical and hydraulic dynamics in the mathematical model of the SHP are considered. We employ a nonlinear controller based on passivity, whose stability is guaranteed under practically reasonable assumptions. Our simulation results show better performance of the proposed controller when compared with a PI controller in all of the scenarios that were considered. © 2019 Elsevier B.V.Universidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITIThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015 , and in part by the Universidad Tecnológica de Bolívar under Project C2018P020.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075434843&doi=10.1016%2fj.epsr.2019.106104&partnerID=40&md5=c817713e3c712e1babd6cf339a24e837Modeling and control of a small hydro-power plant for a DC microgridinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1DC microgridPassivity-based controlReasonable assumptionsSmall hydro-power plantControllersHydraulic motorsHydroelectric powerPermanent magnetsRobustness (control systems)Synchronous generatorsDc microgridModeling and controlNon-linear controllersPassivity based controlPermanent magnet synchronous generatorReasonable assumptionsSmall hydro power plantsVoltage source convertersHydroelectric power plantsGil-González W.Montoya O.D.Garces A.Hirsch, A., Parag, Y., Guerrero, J., Microgrids: a review of technologies, key drivers, and outstanding issues (2018) Renew. Sustain. Energy Rev., 90, pp. 402-411Wang, Y., Wang, C., Xu, L., Meng, J., Hei, Y., Adjustable inertial response from the converter with adaptive droop control in dc grids (2018) IEEE Trans. Smart Grid, , 1-1Liu, J., Hossain, M., Lu, J., Rafi, F., Li, H., A hybrid ac/dc microgrid control system based on a virtual synchronous generator for smooth transient performances (2018) Electr. Power Syst. Res., 162, pp. 169-182Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Reddy, K.M., Singh, B., Multi-objective control algorithm for small hydro and SPV generation-based dual mode reconfigurable system (2017) IEEE Trans. Smart Grid, 9 (5), pp. 4942-4952Chowdhury, D., Hasan, A.S.M.K., Khan, M.Z.R., Scalable DC microgrid architecture with phase shifted full bridge converter based power management unit (2018) 2018 10th International Conference on Electrical and Computer Engineering (ICECE), pp. 22-25Hasan, A.S.M.K., Chowdhury, D., Khan, M.Z.R., Scalable DC microgrid architecture with a one-way communication based control interface (2018) 2018 10th International Conference on Electrical and Computer Engineering (ICECE), pp. 265-268Ma, W.-J., Wang, J., Lu, X., Gupta, V., Optimal operation mode selection for a dc microgrid (2016) IEEE Trans. Smart Grid, 7 (6), pp. 2624-2632Borkowski, D., Analytical model of small hydropower plant working at variable speed (2018) IEEE Trans. Energy Convers., 33 (4), pp. 1886-1894Hasan, A.S.M., Chowdhury, D., Khan, M.Z.R., Performance Analysis of a Scalable DC Microgrid Offering Solar Power Based Energy Access and efficient control for Domestic Loads (2018)Gil-González, W., Garces, A., Escobar-Mejía, A., Montoya, O.D., Passivity-based control for hydro-turbine governing systems (2018) 2018 IEEE PES Transmission Distribution Conference and Exhibition – Latin America (T D-LA), pp. 1-5Dubey, V.K., Singhal, A., Suryawanshi, H., High efficient AC/DC Converter For micro-hydro-power plant for DC grid (2014) International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), pp. 1-5Meshram, S., Agnihotri, G., Gupta, S., Modeling of grid connected dc linked PV/hydro hybrid system (2013) Electr. Electron. Eng.: Int. J., 2 (3), pp. 13-27Sinha, S., Yadav, A., Modelling of DC linked PV/hydro hybrid system for rural electrification (2017) 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 55-59Breban, S., Robyns, B., Radulescu, M.M., Study of a grid-connected hybrid wind/micro-hydro-power system associated with a supercapacitor energy storage device (2010) 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, pp. 1198-1203Fang, H., Chen, L., Shen, Z., Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor (2011) Energy Convers. Manag., 52 (4), pp. 1763-1770Simani, S., Alvisi, S., Venturini, M., Fault tolerant control of a simulated hydroelectric system (2016) Control Eng. Pract., 51, pp. 13-25Guo, W., Yang, J., Wang, M., Lai, X., Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance (2015) Energy Convers. Manage., 106, pp. 127-138Zhu, W., Zheng, Y., Dai, J., Zhou, J., Design of integrated synergetic controller for the excitation and governing system of hydraulic generator unit (2017) Eng. Appl. Artif. Intell., 58, pp. 79-87Kishor, N., Singh, S., Simulated response of NN based identification and predictive control of hydro plant (2007) Expert Syst. Appl., 32 (1), pp. 233-244Yuan, X., Chen, Z., Yuan, Y., Huang, Y., Li, X., Li, W., Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method (2016) Math. Compt. Simul., 119, pp. 18-34Nagode, K., Škrjanc, I., Modelling and internal fuzzy model power control of a Francis water turbine (2014) Energies, 7 (2), pp. 874-889Jones, D., Mansoor, S., Predictive feedforward control for a hydroelectric plant (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 956-965Atta, K.T., Johansson, A., Cervantes, M.J., Gustafsson, T., Maximum power point tracking for micro hydro power plants using extremum seeking control (2015) 2015 IEEE Conference on Control Applications (CCA), pp. 1874-1879Ma, C., Liu, C., Zhang, X., Sun, Y., Wu, W., Xie, J., Fixed-time stability of the hydraulic turbine governing system (2018) Math. Probl. Eng., 2018Gil-González, W., Garces, A., Escobar, A., Passivity-based control and stability analysis for hydro-turbine governing systems (2019) Appl. Math. Modell., 68, pp. 471-486Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuška, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238Ortega, R., van der Schaft, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Machowski, J., Bialek, J.W., Bumby, J.R., Power System Dynamics: Stability and Control (2008), 2nd ed. John Wily & SonsSenapati, M., Biswal, G.R., Dynamic study of salient pole synchronous hydro generator – turbine set under variable excitation (2015) 2015 Annual IEEE India Conference (INDICON), pp. 1-5Gil González, W., Garces, A., Fosso, O., Escobar, A., Passivity-based control of power systems considering hydro-turbine with surge tank (2019) IEEE Trans. Power Syst., p. 1Giraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans. Power Syst., 29 (3), pp. 1446-1453Montoya, O.D., Garces, A., Avila-Becerril, S., Espinosa-Pérez, G., Serra, F.M., Stability analysis of single-phase low-voltage ac microgrids with constant power terminals (2018) IEEE Trans. Circuits Syst., 2. , 1-1Xu, T., Zhang, L., Zeng, Y., Qian, J., Hamiltonian model of hydro turbine with sharing Sommon conduit (2012) 2012 Asia-Pacific Power and Energy Engineering Conference, pp. 1-5van der Schaft, A., L2-Gain and Passivity Techniques in Nonlinear Control (2017), 3rd ed. Springer International Publishing AGMancilla-David, F., Ortega, R., Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems (2012) Control Eng. Pract., 20 (2), pp. 173-181Ortega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.J., Passivity-Based Control of Euler–Lagrange Systems: Mechanical, Electrical and Electromechanical Applications (2013), Springer Science & Business MediaKhalil, H.K., Nonlinear Systems (2002), Upper Saddle RiverKim, Y.-S., Chung, I.-Y., Moon, S.-I., Tuning of the PI controller parameters of a PMSG wind turbine to improve control performance under various wind speeds (2015) Energies, 8 (2), pp. 1406-1425http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9072/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9072oai:repositorio.utb.edu.co:20.500.12585/90722021-02-02 14:58:14.806Repositorio Institucional UTBrepositorioutb@utb.edu.co |