Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model

This brief addresses the numerical approximation of the maximum power consumption in direct-current microgrids (DC-MGs) with constant power loads through a convex optimizing model. The convex formulation is developed via a semidefinite programming model and is solved by using a MATLAB/CVX package. F...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9150
Acceso en línea:
https://hdl.handle.net/20.500.12585/9150
Palabra clave:
Admissible region
Constant power loads
Linear time-invariant DC grids
Power flow
Semidefinite programming
Convex optimization
Electric load flow
MATLAB
Admissible regions
Constant power load
DC grid
Power flows
Semidefinite programming
Electric power utilization
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_0c15786d79420ececf2e2ae4c15ae788
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9150
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
title Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
spellingShingle Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
Admissible region
Constant power loads
Linear time-invariant DC grids
Power flow
Semidefinite programming
Convex optimization
Electric load flow
MATLAB
Admissible regions
Constant power load
DC grid
Power flows
Semidefinite programming
Electric power utilization
title_short Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
title_full Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
title_fullStr Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
title_full_unstemmed Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
title_sort Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model
dc.subject.keywords.none.fl_str_mv Admissible region
Constant power loads
Linear time-invariant DC grids
Power flow
Semidefinite programming
Convex optimization
Electric load flow
MATLAB
Admissible regions
Constant power load
DC grid
Power flows
Semidefinite programming
Electric power utilization
topic Admissible region
Constant power loads
Linear time-invariant DC grids
Power flow
Semidefinite programming
Convex optimization
Electric load flow
MATLAB
Admissible regions
Constant power load
DC grid
Power flows
Semidefinite programming
Electric power utilization
description This brief addresses the numerical approximation of the maximum power consumption in direct-current microgrids (DC-MGs) with constant power loads through a convex optimizing model. The convex formulation is developed via a semidefinite programming model and is solved by using a MATLAB/CVX package. For comparison purposes the exact nonlinear model is solved in a GAMS package to compare the accuracy and quality of the results obtained with the proposed convex reformulation. Numerical testing is made with a small three-node DC-MG test system as well as DC-MGs from 10 to 150 nodes. © 2004-2012 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:04Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:04Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 4; pp. 642-646
dc.identifier.issn.none.fl_str_mv 15497747
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9150
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2018.2866447
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
identifier_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 4; pp. 642-646
15497747
10.1109/TCSII.2018.2866447
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
url https://hdl.handle.net/20.500.12585/9150
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052681855&doi=10.1109%2fTCSII.2018.2866447&partnerID=40&md5=45cf7d8232f2d95356858a63e2551548
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9150/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021693047308288
spelling 2020-03-26T16:33:04Z2020-03-26T16:33:04Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 4; pp. 642-64615497747https://hdl.handle.net/20.500.12585/915010.1109/TCSII.2018.2866447Universidad Tecnológica de BolívarRepositorio UTB56919564100This brief addresses the numerical approximation of the maximum power consumption in direct-current microgrids (DC-MGs) with constant power loads through a convex optimizing model. The convex formulation is developed via a semidefinite programming model and is solved by using a MATLAB/CVX package. For comparison purposes the exact nonlinear model is solved in a GAMS package to compare the accuracy and quality of the results obtained with the proposed convex reformulation. Numerical testing is made with a small three-node DC-MG test system as well as DC-MGs from 10 to 150 nodes. © 2004-2012 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland GovernmentManuscript received May 30, 2018; revised August 14, 2018; accepted August 17, 2018. Date of publication August 21, 2018; date of current version March 26, 2019. This work was supported in part by the National Scholarship Program of Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) under Grant 727-2015, and in part by the Ph.D. Program in Engineering of the Technological University of Pereira. This brief was recommended by Associate Editor S. C. Wong.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85052681855&doi=10.1109%2fTCSII.2018.2866447&partnerID=40&md5=45cf7d8232f2d95356858a63e2551548Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Admissible regionConstant power loadsLinear time-invariant DC gridsPower flowSemidefinite programmingConvex optimizationElectric load flowMATLABAdmissible regionsConstant power loadDC gridPower flowsSemidefinite programmingElectric power utilizationMontoya O.D.Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Hubble, A.H., Ustun, T.S., Composition, placement, and economics of rural microgrids for ensuring sustainable development (2018) Sustain. Energy Grids Netw., 13, pp. 1-18. , MarKarimipour, D., Salmasi, F.R., Stability analysis of AC microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (7), pp. 696-700. , JulEllabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technol-ogy (2014) Renew. Sustain. Energy Rev., 39, pp. 748-764. , NovQian, T., A converter combination scheme for efficiency improvement of PV systems IEEE Trans. Circuits Syst. II, Exp. Briefs, , https://ieeexplore.ieee.org/document/8070390/, to be published [Online]Simpson-Porco, J.W., Dorfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , AugSanchez, S., Ortega, R., Griñó, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , JulMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Elect. Power Syst. Res., 163, pp. 375-381. , OctMacHado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear AC networks with constant-power loads (2017) IEEE Trans. Circuits Syst. I, Reg. Papers, 64 (10), pp. 2772-2782. , OctXu, Y., Assessing short-term voltage stability of electric power systems by a hierarchical intelligent system (2016) IEEE Trans. Neural Netw. Learn. Syst., 27 (8), pp. 1686-1696. , AugSingh, S., Fulwani, D., On design of a robust controller to mitigate CPL effect: A DC micro-grid application (2014) Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Feb., pp. 448-454Chusovitin, P., Pazderin, A., Shabalin, G., Tashchilin, V., Bannykh, P., Voltage stability analysis using Newton method (2015) Proc. IEEE Eindhoven PowerTech, Jun., pp. 1-7Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Elect. Power Syst. Res., 151, pp. 149-153. , OctGarces, A., Montoya, D., Torres, R., Optimal power flow in multi-terminal HVDC systems considering DC/DC converters (2016) Proc. IEEE 25th Int. Symp. Ind. Electron. (ISIE), Jun., pp. 1212-1217Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , SepBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , JanGarces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777. , SepLeonardi, B., Ajjarapu, V., Development of multilinear regression models for online voltage stability margin estimation (2011) IEEE Trans. Power Syst., 26 (1), pp. 374-383. , FebFletcher, J.R.E., Fernando, T.L., Iu, H., Reynolds, M., Fani, S., Spatial optimization for the planning of sparse power distribution networks IEEE Trans. Power Syst, , https://ieeexplore.ieee.org/document/8379446/, to be published [Online]http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9150/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9150oai:repositorio.utb.edu.co:20.500.12585/91502021-02-02 14:36:35.504Repositorio Institucional UTBrepositorioutb@utb.edu.co