ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes

Accurate mortality prediction allows Intensive Care Units (ICUs) to adequately benchmark clinical practice and identify patients with unexpected outcomes. Traditionally, simple statistical models have been used to assess patient death risk, many times with sub-optimal performance. On the other hand...

Full description

Autores:
Caicedo-Torres, William
Gutierrez, Jairo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11120
Acceso en línea:
https://hdl.handle.net/20.500.12585/11120
https://doi.org/10.1016/j.eswa.2022.117190
Palabra clave:
Deep learning
MIMIC-III
Clinical notes
Shapley Value
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_0be856db31eae8e5a2cf3f0cbc9fa9ac
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11120
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
title ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
spellingShingle ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
Deep learning
MIMIC-III
Clinical notes
Shapley Value
LEMB
title_short ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
title_full ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
title_fullStr ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
title_full_unstemmed ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
title_sort ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes
dc.creator.fl_str_mv Caicedo-Torres, William
Gutierrez, Jairo
dc.contributor.author.none.fl_str_mv Caicedo-Torres, William
Gutierrez, Jairo
dc.subject.keywords.spa.fl_str_mv Deep learning
MIMIC-III
Clinical notes
Shapley Value
topic Deep learning
MIMIC-III
Clinical notes
Shapley Value
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Accurate mortality prediction allows Intensive Care Units (ICUs) to adequately benchmark clinical practice and identify patients with unexpected outcomes. Traditionally, simple statistical models have been used to assess patient death risk, many times with sub-optimal performance. On the other hand deep learning holds promise to positively impact clinical practice by leveraging medical data to assist diagnosis and prediction, including mortality prediction. However, as the question of whether powerful Deep Learning models attend correlations backed by sound medical knowledge when generating predictions remains open, additional interpretability tools are needed to foster trust and encourage the use of AI by clinicians. In this work we show a Deep Learning model trained on MIMIC-III to predict mortality using raw nursing notes, together with visual explanations for word importance. Our model reaches a ROC of 0.8629 (±0.0058), outperforming the traditional SAPS-II score and providing enhanced interpretability when compared with similar Deep Learning approaches.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-05-20
dc.date.accessioned.none.fl_str_mv 2022-09-29T13:22:47Z
dc.date.available.none.fl_str_mv 2022-09-29T13:22:47Z
dc.date.submitted.none.fl_str_mv 2022-09-28
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Caicedo, William & Gutierrez, Jairo. (2020). ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11120
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.eswa.2022.117190
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Caicedo, William & Gutierrez, Jairo. (2020). ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11120
https://doi.org/10.1016/j.eswa.2022.117190
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 32 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv ScienceDirect - Elsevier - Expert Systems with Applications Vol. 202 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/1/ISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/4/ISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/5/ISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.jpg
bitstream.checksum.fl_str_mv 848bd2300a24b95eed83b914c9bb8e24
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
45dc17210c4cb0901e99113703983e59
e1f5a1c51100daaba58d701c556455cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021707456839680
spelling Caicedo-Torres, William865cbcee-ba06-417f-a6ae-50ba943243e3Gutierrez, Jairo32d064db-e471-4a23-9512-7b634356d9c92022-09-29T13:22:47Z2022-09-29T13:22:47Z2020-05-202022-09-28Caicedo, William & Gutierrez, Jairo. (2020). ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notes.https://hdl.handle.net/20.500.12585/11120https://doi.org/10.1016/j.eswa.2022.117190Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAccurate mortality prediction allows Intensive Care Units (ICUs) to adequately benchmark clinical practice and identify patients with unexpected outcomes. Traditionally, simple statistical models have been used to assess patient death risk, many times with sub-optimal performance. On the other hand deep learning holds promise to positively impact clinical practice by leveraging medical data to assist diagnosis and prediction, including mortality prediction. However, as the question of whether powerful Deep Learning models attend correlations backed by sound medical knowledge when generating predictions remains open, additional interpretability tools are needed to foster trust and encourage the use of AI by clinicians. In this work we show a Deep Learning model trained on MIMIC-III to predict mortality using raw nursing notes, together with visual explanations for word importance. Our model reaches a ROC of 0.8629 (±0.0058), outperforming the traditional SAPS-II score and providing enhanced interpretability when compared with similar Deep Learning approaches.32 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ScienceDirect - Elsevier - Expert Systems with Applications Vol. 202 (2022)ISeeU2: Visually Interpretable ICU mortality prediction using deep learning and free-text medical notesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Deep learningMIMIC-IIIClinical notesShapley ValueLEMBCartagena de IndiasG. Grasselli, A. Pesenti, M. Cecconi, Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy, JAMA (2020). doi:10.1001/ jama.2020.4031.E. J. Emanuel, G. Persad, R. Upshur, B. Thome, M. Parker, A. Glick man, C. Zhang, C. Boyle, M. Smith, J. P. Phillips, Fair Allocatio Scarce Medical Resources in the Time of Covid-19, New England Journal of Medicine (2020). doi:10.1056/nejmsb2005114.A. G. Rapsang, D. C. Shyam, Scoring systems in the intensive care unit: A compendium, Indian Journal of Critical Care Medicine : Peer reviewed, Official Publication of Indian Society of Critical Care Medicine 18 (4) (2014) 220–228. doi:10.4103/0972-5229.130573. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033855/S. Purushotham, C. Meng, Z. Che, Y. Liu, Benchmarking Deep Learning Models on Large Healthcare Datasets, Journal of Biomedical Informat ics (2018). doi:https://doi.org/10.1016/j.jbi.2018.04.007. URL http://www.sciencedirect.com/science/article/pii/ S1532046418300716W. Caicedo-Torres, J. Gutierrez, ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU, Journal of Biomedical Informatics 98 (2019) 103269. doi:10.1016/J.JBI.2019.103269. URL https://www.sciencedirect.com/science/article/pii/ S1532046419301881?dgcid=authorD. Shen, G. Wu, H.-I. Suk, Deep Learning in Medical Image Analysis, Annual Review of Biomedical Engineering 19 (1) (2017) null. doi: 10.1146/annurev-bioeng-071516-044442. URL http://dx.doi.org/10.1146/annurev-bioeng-071516-044442B. Shickel, P. J. Tighe, A. Bihorac, P. Rashidi, Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis., IEEE journal of biomedical and health infor matics 22 (5) (2018) 1589–1604. doi:10.1109/JBHI.2017.27P. Grnarova, F. Schmidt, S. L. Hyland, C. Eickhoff, Neural Document Embeddings for Intensive Care Patient Mortality Prediction, CoRR abs/1612.0 (2016).G. F. Cooper, C. F. Aliferis, R. Ambrosino, J. Aronis, B. G. Buchanan, R. Caruana, M. J. Fine, C. Glymour, G. Gordon, B. H. Hanusa, J. E. Janosky, C. Meek, T. Mitchell, T. Richardson, P. Spirtes, An evaluation of machine-learning methods for predicting pneumonia mortality, Ar tificial Intelligence in Medicine (1997). doi:10.1016/S0933-3657(96) 00367-3.A. E. W. Johnson, T. J. Pollard, L. Shen, L.-W. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, R. G. Mark, MIMIC III, a freely accessible critical care database., Sci Data 3 (2016) 160035. doi:10.1038/sdata.2016.35.Y. Jo, L. Lee, S. Palaskar, Combining LSTM and Latent Topic Modeling for Mortality Prediction, ArXiv abs/1709.0 (2017).M. Sushil, S. Suster, K. Luyckx, W. Daelemans, Patient representation ˇ learning and interpretable evaluation using clinical notes, Journal of Biomedical Informatics (2018). arXiv:1807.01395, doi:10.1016/j. jbi.2018.06.016.Y. Si, K. Roberts, Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction., AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Trans lational Science (2019).M. Jin, M. T. Bahadori, A. Colak, P. Bhatia, B. Celikkaya, R. Bhakta, S. Senthivel, M. Khalilia, D. Navarro, B. Zhang, T. Doman, A. Ravi, M. Liger, T. Kass-hout, Improving Hospital Mortality Prediction with Medical Named Entities and Multimodal Learning (2018). arXiv:1811. 12276.Y. LeCun, L. Bottou, Y. Bengio, Haffner, Gradient-Based Learning Ap plied to Document Recognition, in: Proceedings of the IEEE, Vol. 86, 1998, pp. 2278–2324.I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016L. S. Shapley, A Value for n-Person Games, in: H. W. Kuhn, A. W. Tucker (Eds.), Contributions to the Theory of Games II, Princeton Uni versity Press, Princeton, 1953, pp. 307–317E. Strumbelj, I. Kononenko, S. Wrobel, An Efficient Explanation of Indi vidual Classifications using Game Theory, Journal of Machine Learning Research (2010). arXiv:1606.05386, doi:10.1145/2858036.2858529.A. Shrikumar, P. Greenside, A. Kundaje, Learning Important Features Through Propagating Activation Differences, CoRR abs/1704.0 (2017). arXiv:1704.02685. URL http://arxiv.org/abs/1704.02685S. M. Lundberg, S. I. Lee, A unified approach to interpreting model predictions, in: Advances in Neural Information Processing Systems, 2017. arXiv:1705.07874.K. Simonyan, A. Vedaldi, A. Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, CoRR abs/1312.6 (2013). URL http://arxiv.org/abs/1312.6034J. T. Springenberg, A. Dosovitskiy, T. Brox, M. A. Riedmiller, Striving for Simplicity: The All Convolutional Net, CoRR abs/1412.6 (2014). arXiv:1412.6806. URL http://arxiv.org/abs/1412.6806M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, L. Kaiser, M. Kudlur, J. Leven berg, D. Man, R. Monga, S. Moore, D. Murray, J. Shlens, B. Steiner, I. Sutskever, P. Tucker, V. Vanhoucke, V. Vasudevan, O. Vinyals, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, None 1 (212) (2015) 19. arXiv:1603.04467, doi:10.1038/nn.3331. URL http://download.tensorflow.org/paper/whitepaper2015. pdfD. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, ArXiv e-prints (dec 2014). arXiv:1412.6980E. Loper, S. Bird, NLTK, 2002. doi:10.3115/1118108.1118117J. R. Gall, S. Lemeshow, F. Saulnier, A New Simplified Acute Physiol ogy Score (SAPS II) Based on a European/North American Multicenter Study, JAMA: The Journal of the American Medical Association (1993). arXiv:0402594v3, doi:10.1001/jama.1993.03510240069035.A. E. Johnson, D. J. Stone, L. A. Celi, T. J. Pollard, The MIMIC Code Repository: Enabling reproducibility in critical care research, Journal of the American Medical Informatics Association (2018). doi:10.1093/ jamia/ocx084.S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Com put. 9 (8) (1997) 1735–1780. doi:10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735Z. C. Lipton, The Mythos of Model Interpretability, ICML Workshop on Human Interpretability in Machine Learning abs/1606.0 (2016) 96–100. arXiv:arXiv:1606.03490v1. URL http://arxiv.org/abs/1606.03490Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent Neu ral Networks for Multivariate Time Series with Missing Values, CoRR abs/1606.0 (2016). URL http://arxiv.org/abs/1606.01865Z. C. Lipton, D. Kale, R. Wetzel, Directly Modeling Missing Data in Sequences with RNNs: Improved Classification of Clinical Time Series, in: F. Doshi-Velez, J. Fackler, D. Kale, B. Wallace, J. Weins (Eds.), Proceedings of the 1st Machine Learning for Healthcare Conference, Vol. 56 of Proceedings of Machine Learning Research, PMLR, North eastern University, Boston, MA, USA, 2016, pp. 253–270. URL http://proceedings.mlr.press/v56/Lipton16.htmlVol. 56 of Proceedings of Machine Learning Research, PMLR, North eastern University, Boston, MA, USA, 2016, pp. 253–270. URL http://proceedings.mlr.press/v56/Lipton16.htmlhttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINALISeeU2_Visually_Interpretable_ICU_mortality_predic.pdfISeeU2_Visually_Interpretable_ICU_mortality_predic.pdfapplication/pdf8820916https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/1/ISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf848bd2300a24b95eed83b914c9bb8e24MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.txtISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.txtExtracted texttext/plain39232https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/4/ISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.txt45dc17210c4cb0901e99113703983e59MD54THUMBNAILISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.jpgISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.jpgGenerated Thumbnailimage/jpeg5827https://repositorio.utb.edu.co/bitstream/20.500.12585/11120/5/ISeeU2_Visually_Interpretable_ICU_mortality_predic.pdf.jpge1f5a1c51100daaba58d701c556455ccMD5520.500.12585/11120oai:repositorio.utb.edu.co:20.500.12585/111202022-09-30 00:18:49.872Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=