Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients
Pneumonia is a condition that can be life-threatening and affects a high number of children around the world. Lung ultrasound can be used for the diagnosis of pneumonia, but requires high experience. This paper presents an approach for pneumonia detection based on texture analysis of ultrasound imag...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9153
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9153
- Palabra clave:
- Pneumonia
Texture analysis
Ultrasound imaging
Diagnosis
Image analysis
Textures
Ultrasonic imaging
Vision
Exploratory analysis
Lung ultrasound
Pediatric patients
Pneumonia
Texture analysis
Texture features
Ultrasound images
Ultrasound imaging
Image texture
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_0ba8f50e4da3c7f550b34d64450f18df |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9153 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients |
title |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients |
spellingShingle |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients Pneumonia Texture analysis Ultrasound imaging Diagnosis Image analysis Textures Ultrasonic imaging Vision Exploratory analysis Lung ultrasound Pediatric patients Pneumonia Texture analysis Texture features Ultrasound images Ultrasound imaging Image texture |
title_short |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients |
title_full |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients |
title_fullStr |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients |
title_full_unstemmed |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients |
title_sort |
Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients |
dc.subject.keywords.none.fl_str_mv |
Pneumonia Texture analysis Ultrasound imaging Diagnosis Image analysis Textures Ultrasonic imaging Vision Exploratory analysis Lung ultrasound Pediatric patients Pneumonia Texture analysis Texture features Ultrasound images Ultrasound imaging Image texture |
topic |
Pneumonia Texture analysis Ultrasound imaging Diagnosis Image analysis Textures Ultrasonic imaging Vision Exploratory analysis Lung ultrasound Pediatric patients Pneumonia Texture analysis Texture features Ultrasound images Ultrasound imaging Image texture |
description |
Pneumonia is a condition that can be life-threatening and affects a high number of children around the world. Lung ultrasound can be used for the diagnosis of pneumonia, but requires high experience. This paper presents an approach for pneumonia detection based on texture analysis of ultrasound images. Several measures were taken in healthy tissues and pneumonia lesions, and the most significant features were identified by statistical analysis. The results of the analysis of variance and exploratory analysis suggest that detection of pneumonia is possible based on image texture features. © 2019 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:04Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:04Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings |
dc.identifier.isbn.none.fl_str_mv |
9781728114910 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9153 |
dc.identifier.doi.none.fl_str_mv |
10.1109/STSIVA.2019.8730238 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57209529596 57209540733 56682770100 57209534730 57210822856 |
identifier_str_mv |
2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings 9781728114910 10.1109/STSIVA.2019.8730238 Universidad Tecnológica de Bolívar Repositorio UTB 57209529596 57209540733 56682770100 57209534730 57210822856 |
url |
https://hdl.handle.net/20.500.12585/9153 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
24 April 2019 through 26 April 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068092598&doi=10.1109%2fSTSIVA.2019.8730238&partnerID=40&md5=8e6e8606e1550f0ed1795969ede9b409 Scopus2-s2.0-85068092598 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9153/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021566734794752 |
spelling |
2020-03-26T16:33:04Z2020-03-26T16:33:04Z20192019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings9781728114910https://hdl.handle.net/20.500.12585/915310.1109/STSIVA.2019.8730238Universidad Tecnológica de BolívarRepositorio UTB5720952959657209540733566827701005720953473057210822856Pneumonia is a condition that can be life-threatening and affects a high number of children around the world. Lung ultrasound can be used for the diagnosis of pneumonia, but requires high experience. This paper presents an approach for pneumonia detection based on texture analysis of ultrasound images. Several measures were taken in healthy tissues and pneumonia lesions, and the most significant features were identified by statistical analysis. The results of the analysis of variance and exploratory analysis suggest that detection of pneumonia is possible based on image texture features. © 2019 IEEE.IEEE Colombia Section;IEEE Signal Processing Society Colombia Chapter;Universidad Industrial de SantanderRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068092598&doi=10.1109%2fSTSIVA.2019.8730238&partnerID=40&md5=8e6e8606e1550f0ed1795969ede9b409Scopus2-s2.0-8506809259822nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patientsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fPneumoniaTexture analysisUltrasound imagingDiagnosisImage analysisTexturesUltrasonic imagingVisionExploratory analysisLung ultrasoundPediatric patientsPneumoniaTexture analysisTexture featuresUltrasound imagesUltrasound imagingImage texture24 April 2019 through 26 April 2019Contreras Ojeda, SaraSierra-Pardo C.Domínguez Jiménez, Juan AntonioLópez-Bueno J.Contreras Ortiz, Sonia HelenaOrganization, W.H., (2016) Pneumonia, , https://www.who.int/news-room/factsheets/detail/pneumonia, last accessed 18 September 2019DerSarkissian, C., (2017) What Is Pneumonia?, , https://www.webmd.com/lung/understandingpneumonia-basics, last accessed 18 September 2019Scott, J.A.G., Wonodi, C., Möisi, J.C., Deloria-Knoll, M., Deluca, A.N., Karron, R.A., Bhat, N., Feikin, D.R., The definition of pneumonia, the assessment of severity, and clinical standardization in the pneumonia etiology research for child health study (2012) Clinical Infectious Diseases, 54Cisneros-Velarde, P., Correa, M., Mayta, H., Anticona, C., Pajuelo, M., Oberhelman, R., Checkley, W., Castaneda, B., Automatic pneumonia detection based on ultrasound video analysis (2016) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016, pp. 4117-4120. , OctobHew, M., Tay, T.R., The efficacy of bedside chest ultrasound: From accuracy to outcomes (2016) European Respiratory Review, 25 (141), pp. 230-246. , http://dx.doi.org/10.1183/16000617.0047-2016Claes, A.-S., Clapuyt, P., Menten, R., Michoux, N., Dumitriu, D., Performance of chest ultrasound in pediatric pneumonia (2016) European Journal of Radiology, , http://dx.doi.org/10.1016/j.ejrad.2016.12.032Zenteno, O., Castaneda, B., Lavarello, R., Spectralbased pneumonia detection tool using ultrasound data from pediatric populations (2016) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016, pp. 4129-4132. , OctobBonet-Carne, E., Palacio, M., Cobo, T., Perez-Moreno, A., Lopez, M., Piraquive, J.P., Ramirez, J.C., Gratacos, E., Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity (2015) Ultrasound in Obstetrics and Gynecology, 45 (4), pp. 427-433(2018) Automatic Lung Ultrasound B-line Recognition in Pediatric Populations for the Detection of Pneumonia, , https://doi.org/10.1117/12.2293902, 10574http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9153/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9153oai:repositorio.utb.edu.co:20.500.12585/91532023-05-26 16:00:28.234Repositorio Institucional UTBrepositorioutb@utb.edu.co |