Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches
This paper presents a unified Hamiltonian formulation for controlling distributed energy resources (DERs)in ac single-phase microgrids (SP-MGs)via proportional-integral passivity-based control (PI-PBC), and interconnection and damping assignment passivity-based control (IDA-PBC). The proposed Hamilt...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8906
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8906
- Palabra clave:
- Distributed energy resources
Hamiltonian modeling
Lyapunov's stability
Passivity-based control
Single-phase converters
Single-phase microgrids
Computation theory
Energy resources
Hamiltonians
MATLAB
Pulse width modulation
Two term control systems
Distributed energy resources
Hamiltonian modeling
Lyapunov's stability
Micro grid
Passivity based control
Single phase converter
Power converters
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_0a70f45a7affb5ceb58c836a0188a796 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8906 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches |
title |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches |
spellingShingle |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches Distributed energy resources Hamiltonian modeling Lyapunov's stability Passivity-based control Single-phase converters Single-phase microgrids Computation theory Energy resources Hamiltonians MATLAB Pulse width modulation Two term control systems Distributed energy resources Hamiltonian modeling Lyapunov's stability Micro grid Passivity based control Single phase converter Power converters |
title_short |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches |
title_full |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches |
title_fullStr |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches |
title_full_unstemmed |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches |
title_sort |
Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches |
dc.subject.keywords.none.fl_str_mv |
Distributed energy resources Hamiltonian modeling Lyapunov's stability Passivity-based control Single-phase converters Single-phase microgrids Computation theory Energy resources Hamiltonians MATLAB Pulse width modulation Two term control systems Distributed energy resources Hamiltonian modeling Lyapunov's stability Micro grid Passivity based control Single phase converter Power converters |
topic |
Distributed energy resources Hamiltonian modeling Lyapunov's stability Passivity-based control Single-phase converters Single-phase microgrids Computation theory Energy resources Hamiltonians MATLAB Pulse width modulation Two term control systems Distributed energy resources Hamiltonian modeling Lyapunov's stability Micro grid Passivity based control Single phase converter Power converters |
description |
This paper presents a unified Hamiltonian formulation for controlling distributed energy resources (DERs)in ac single-phase microgrids (SP-MGs)via proportional-integral passivity-based control (PI-PBC), and interconnection and damping assignment passivity-based control (IDA-PBC). The proposed Hamiltonian formulation allows us to consider both pulse-width modulated voltage source converters (PWM-VSC)and pulse-width modulated current source converters (PWM-CSC)under a unified model. Renewable generation and supercapacitor energy storage systems are integrated via PWM-VSC technologies, while superconducting coils are integrated through PWM-CSC technologies. IDA-PBC and PI-PBC theories enable us to design control strategies begin that consider Lyapunov's stability theory combined with the well-known advantages of proportional and integral control actions. Our simulation's results corroborate the applicability of the proposed control approaches under stability paradigm. MATLAB/Simulink is employed for computational implementations via begin the SimPowerSystems toolbox. © 2019 Elsevier Ltd |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:35Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:35Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
International Journal of Electrical Power and Energy Systems; Vol. 112, pp. 221-231 |
dc.identifier.issn.none.fl_str_mv |
01420615 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8906 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ijepes.2019.04.046 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57191493648 36449223500 |
identifier_str_mv |
International Journal of Electrical Power and Energy Systems; Vol. 112, pp. 221-231 01420615 10.1016/j.ijepes.2019.04.046 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57191493648 36449223500 |
url |
https://hdl.handle.net/20.500.12585/8906 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065417421&doi=10.1016%2fj.ijepes.2019.04.046&partnerID=40&md5=b6e77312c759e299bcb7f6b21a537442 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8906/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021625794789376 |
spelling |
2020-03-26T16:32:35Z2020-03-26T16:32:35Z2019International Journal of Electrical Power and Energy Systems; Vol. 112, pp. 221-23101420615https://hdl.handle.net/20.500.12585/890610.1016/j.ijepes.2019.04.046Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364836449223500This paper presents a unified Hamiltonian formulation for controlling distributed energy resources (DERs)in ac single-phase microgrids (SP-MGs)via proportional-integral passivity-based control (PI-PBC), and interconnection and damping assignment passivity-based control (IDA-PBC). The proposed Hamiltonian formulation allows us to consider both pulse-width modulated voltage source converters (PWM-VSC)and pulse-width modulated current source converters (PWM-CSC)under a unified model. Renewable generation and supercapacitor energy storage systems are integrated via PWM-VSC technologies, while superconducting coils are integrated through PWM-CSC technologies. IDA-PBC and PI-PBC theories enable us to design control strategies begin that consider Lyapunov's stability theory combined with the well-known advantages of proportional and integral control actions. Our simulation's results corroborate the applicability of the proposed control approaches under stability paradigm. MATLAB/Simulink is employed for computational implementations via begin the SimPowerSystems toolbox. © 2019 Elsevier LtdUniversidad Tecnológica de Pereira: Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government Universidad Tecnológica de PereiraThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015 during the development of the doctoral thesis ”Passivity-based analysis and control of AC microgrids: Integration, operation and control of energy storage systems” in the Universidad Tecnológica de Pereira, and in part by the Universidad Tecnológica de Bolívar under Project C2018P020 .Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85065417421&doi=10.1016%2fj.ijepes.2019.04.046&partnerID=40&md5=b6e77312c759e299bcb7f6b21a537442Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approachesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Distributed energy resourcesHamiltonian modelingLyapunov's stabilityPassivity-based controlSingle-phase convertersSingle-phase microgridsComputation theoryEnergy resourcesHamiltoniansMATLABPulse width modulationTwo term control systemsDistributed energy resourcesHamiltonian modelingLyapunov's stabilityMicro gridPassivity based controlSingle phase converterPower convertersMontoya O.D.Gil-González W.Garces A.Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J Energy Storage, 16, pp. 250-258Montoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J Energy Storage, 16, pp. 259-268Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Ortega, A., Milano, F., Generalized model of vsc-based energy storage systems for transient stability analysis (2016) IEEE Trans Power Syst, 31 (5), pp. 3369-3380Ahn, S.J., Park, J.W., Chung, I.Y., Moon, S.I., Kang, S.H., Nam, S.R., Power-sharing method of multiple distributed generators considering control modes and configurations of a microgrid (2010) IEEE Trans Power Del, 25 (3), pp. 2007-2016Bo, T.I., Johansen, T.A., Battery power smoothing control in a marine electric power plant using nonlinear model predictive control (2017) IEEE Trans Control Syst Technol, 25 (4), pp. 1449-1456Avila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., Garcés, A., Control of a detailed model of microgrids from a hamiltonian approach (2018) IFAC-PapersOnLine, 51 (3), pp. 187-192. , 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018del Puerto-Flores, D., Scherpen, J.M.A., Liserre, M., de Vries, M.M.J., Kransse, M.J., Monopoli, V.G., Passivity-based control by series/parallel damping of single-phase PWM voltage source converter (2014) IEEE Trans Control Syst Technol, 22 (4), pp. 1310-1322Montoya, O.D., Garces, A., Serra, F.M., Magaldi, G., Apparent power control in single-phase grids using SCES devices: an IDA-PBC approach (2018) 2018 IEEE 9th Latin American Symposium on Circuits Systems (LASCAS), pp. 1-4Wu, D., Tang, F., Dragicevic, T., Vasquez, J.C., Guerrero, J.M., Autonomous active power control for islanded AC microgrids with photovoltaic generation and energy storage system (2014) IEEE Trans Energy Convers, 29 (4), pp. 882-892Adhikari, S., Li, F., Li, H., P-Q and P-V control of photovoltaic generators in distribution systems (2015) IEEE Trans Smart Grid, 6 (6), pp. 2929-2941Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J Energy Storage, 17, pp. 261-271Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) Ninth Annual IEEE Green Technologies Conference (GreenTech), 2017, pp. 145-150Giraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans Power Syst, 29 (3), pp. 1446-1453Daz, N.L., Luna, A.C., Vasquez, J.C., Guerrero, J.M., Centralized control architecture for coordination of distributed renewable generation and energy storage in Islanded AC microgrids (2017) IEEE Trans Power Electron, 32 (7), pp. 5202-5213Hamidi, R.J., Livani, H., Hosseinian, S.H., Gharehpetian, G.B., Distributed cooperative control system for smart microgrids (2016) Electr Power Syst Res, 130, pp. 241-250Avila-Becerril, S., Espinosa-Pérez, G., Fernandez, P., Dynamic characterization of typical electrical circuits via structural properties (2016) Math Probl Eng, 2016, pp. 1-13Kim, A.R., Kim, G.H., Heo, S., Park, M., Yu, I.K., Kim, H.M., SMES application for frequency control during islanded microgrid operation (2013) Physica C, 484, pp. 282-286Lu, L.Y., Chu, C.C., Consensus-based secondary frequency and voltage droop control of virtual synchronous generators for isolated AC micro-grids (2015) Trans Emerg Sel Topics Circuits Syst, 5 (3), pp. 443-455Montoya, O.D., Gil-González, W., Time-domain analysis for current control in single-phase distribution networks using SMES devices with PWM-CSCs (2019) Electric Power Compon Syst, pp. 1-10del Puerto-Flores, D., Scherpen, J.M.A., Liserre, M., de Vries, M.M.J., Kransse, M.J., Monopoli, V.G., Passivity-based control by series/parallel damping of single-phase PWM voltage source converter (2014) IEEE Trans Control Syst Technol, 22 (4), pp. 1310-1322Komurcugil, H., Steady-state analysis and passivity-based control of single-phase pwm current-source inverters (2010) IEEE Trans Ind Electron, 57 (3), pp. 1026-1030Barote, L., Marinescu, C., Cirstea, M.N., Control structure for single-phase stand-alone wind-based energy sources (2013) IEEE Trans Ind Electron, 60 (2), pp. 764-772Acuna, P., Aguilera, R.P., Ghias, A.M.Y.M., Rivera, M., Baier, C.R., Agelidis, V.G., Cascade-free model predictive control for single-phase grid-connected power converters (2017) IEEE Trans Ind Electron, 64 (1), pp. 285-294Monfared, M., Sanatkar, M., Golestan, S., Direct active and reactive power control of single-phase grid-tie converters (2012) IET Power Electron, 5 (8), pp. 1544-1550Evran, F., Plug-in repetitive control of single-phase grid-connected inverter for ac module applications (2017) IET Power Electron, 10 (1), pp. 47-58Kumar, A., Bhat, A., Singh, S.P., Performance evaluation of fuzzy logic controlled voltage source inverter based unified power quality conditioner for mitigation of voltage and current harmonics (2016) 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1799-1804. , IEEEAbrishamifar, A., Ahmad, A., Mohamadian, M., Fixed switching frequency sliding mode control for single-phase unipolar inverters (2012) IEEE Trans Power Electron, 27 (5), pp. 2507-2514Monfared, M., Golestan, S., Guerrero, J.M., Analysis, design, and experimental verification of a synchronous reference frame voltage control for single-phase inverters (2014) IEEE Trans Ind Electron, 61 (1), pp. 258-269Mao, P., Zhang, M., Cui, S., Zhang, W., Kwon, B.-H., A review of current control strategy for single-phase grid-connected inverters (2014) TELKOMNIKA, 12 (3), pp. 563-580Bahrani, B., Rufer, A., Kenzelmann, S., Lopes, L.A.C., Vector control of single-phase voltage-source converters based on fictive-axis emulation (2011) IEEE Trans Ind Appl, 47 (2), pp. 831-840Dasgupta, S., Sahoo, S.K., Panda, S.K., Single-phase inverter control techniques for interfacing renewable energy sources with microgrid part i: Parallel-connected inverter topology with active and reactive power flow control along with grid current shaping (2011) IEEE Trans Power Electron, 26 (3), pp. 717-731Gautam, S., Gupta, R., Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters (2013) IET Power Electron, 6 (4), pp. 683-692Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans Power Deliv, 23 (4), pp. 2097-2104Fu, X., Li, S., Control of single-phase grid-connected converters with LCL filters using recurrent neural network and conventional control methods (2016) IEEE Trans Power Electron, 31 (7), pp. 5354-5364Song, W., Ma, J., Zhou, L., Feng, X., Deadbeat predictive power control of single-phase three-level neutral-point-clamped converters using space-vector modulation for electric railway traction (2016) IEEE Trans Power Electron, 31 (1), pp. 721-732Rashed, M., Klumpner, C., Asher, G., Repetitive and resonant control for a single-phase grid-connected hybrid cascaded multilevel converter (2013) IEEE Trans Power Electron, 28 (5), pp. 2224-2234Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Sun, Q., Guerrero, J.M., Jing, T., Vasquez, J.C., Yang, R., An Islanding detection method by using frequency positive feedback based on FLL for single-phase microgrid (2017) IEEE Trans Smart Grid, 8 (4), pp. 1821-1830Wang, C., Yang, P., Ye, C., Wang, Y., Xu, Z., Voltage control strategy for three/single phase hybrid multimicrogrid (2016) IEEE Trans Energy Convers, 31 (4), pp. 1498-1509Wang, Q., Cheng, M., Jiang, Y., Zuo, W., Buja, G., A simple active and reactive power control for applications of single-phase electric springs (2018) IEEE Trans Ind Electron, 65 (8), pp. 6291-6300Karimi, Y., Oraee, H., Guerrero, J.M., Decentralized method for load sharing and power management in a hybrid single/three-phase-Islanded microgrid consisting of hybrid source PV/battery units (2017) IEEE Trans Power Electron, 32 (8), pp. 6135-6144Golsorkhi, M.S., Shafiee, Q., Lu, D.D., Guerrero, J.M., A distributed control framework for integrated photovoltaic-battery-based Islanded microgrids (2017) IEEE Trans Smart Grid, 8 (6), pp. 2837-2848Gonzalez, R.O., Castillo, O.C., Saavedra, J.C.S., Ortega, V.H.G., Trejo, A.G., Application control configurations for parallel connection of single-phase energy conversion units operating in island mode (2016) IEEE Latin Am Trans, 14 (2), pp. 694-703Micallef, A., Apap, M., Spiteri-Staines, C., Guerrero, J.M., Vasquez, J.C., Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase Islanded microgrids (2014) IEEE Trans Smart Grid, 5 (3), pp. 1149-1158Morales-Paredes, H.K., Bonaldo, J.P., Pomilio, J.A., Centralized Control center implementation for synergistic operation of distributed multifunctional single-phase grid-tie inverters in a microgrid (2018) IEEE Trans Ind Electron, 65 (10), pp. 8018-8029Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans Autom Control, 61 (5), pp. 1223-1238Serra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Latin Am Trans, 11 (1), pp. 293-299Cisneros, R., Mancilla-David, F., Ortega, R., Passivity-based control of a grid-connected small-scale windmill with limited control authority (2013) IEEE J Emerg Sel Top Power Electron, 1 (4), pp. 247-259Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems and its application to the boost and modular multilevel converters (2015) IFAC-PapersOnLine, 48 (11), pp. 420-425. , 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems MICNON 2015Ávila-Becerril, S.M., Caracterización y control de microrredes viá propiedades estructurales (2016), [Ph.D. thesis]Universidad Nacional Autónoma de México Facultad de IngenieríaRamírez, H., Le Gorrec, Y., Maschke, B., Couenne, F., On the passivity based control of irreversible processes: a port-Hamiltonian approach (2016) Automatica, 64, pp. 105-111Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (2017) Electr Power Syst Res, 142, pp. 12-19Khalil, H., Nonlinear systems, always learning (2013), Pearson Education, LimitedMontoya, O.D., Gil-González, W., Avila-Becerril, S., Garces, A., Espinosa-Pérez, G., Distributed energy resources integration in AC grids: a family of passivity-based controllers (In Spanish) (2019) Revista Iberoamericana de Automatica e Informatica Industrial, 16 (2), pp. 212-221Zong, X., Single, A., Phase grid connected DC/AC inverter with reactive power control for residential PV application (2011), [Master's thesis]Department of Electrical and Computer Engineering, University of TorontoGil-González, W., Montoya, O.D., Active and reactive power conditioning using SMES devices with PMW-CSC: a feedback nonlinear control approach (2019) Ain Shams Eng J, p. 1Grisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A., Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin Am Trans, 15 (6), pp. 1084-1090Pahlevani, M., Eren, S., Guerrero, J.M., Jain, P., A hybrid estimator for active/reactive power control of single-phase distributed generation systems with energy storage (2016) IEEE Trans Power Electron, 31 (4), pp. 2919-2936Monfared, M., Sanatkar, M., Golestan, S., Direct active and reactive power control of single-phase grid-tie converters (2012) IET Power Electron, 5 (8), pp. 1544-1550Song, W., Deng, Z., Wang, S., Feng, X., A simple model predictive power control strategy for single-phase PWM converters with modulation function optimization (2016) IEEE Trans Power Electron, 31 (7), pp. 5279-5289Pahlevaninezhad, M., Eren, S., Jain, P.K., Bakhshai, A., Self-sustained oscillating control technique for current-driven full-bridge DC/DC converter (2013) IEEE Trans Power Electron, 28 (11), pp. 5293-5310Eren, S., Pahlevaninezhad, M., Bakhshai, A., Jain, P.K., Composite nonlinear feedback control and stability analysis of a grid-connected voltage source inverter with lcl filter (2013) IEEE Trans Ind Electron, 60 (11), pp. 5059-5074http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8906/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8906oai:repositorio.utb.edu.co:20.500.12585/89062021-02-02 14:28:22.938Repositorio Institucional UTBrepositorioutb@utb.edu.co |