Deep learning architectures for the analysis and classification of brain tumors in MR images
The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tiss...
- Autores:
-
Osorio-Barone, A.
Contreras Ortiz, Sonia Helena
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9955
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9955
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=1
- Palabra clave:
- Bioinformatics
Brain
Computer aided diagnosis
Convolutional neural networks
Image classification
Image enhancement
Learning systems
Magnetic resonance
Magnetic resonance imaging
Network architecture
Transfer learning
Tumors
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_096684e6e2e43e8a9efaa5068ebfec7f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9955 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
spellingShingle |
Deep learning architectures for the analysis and classification of brain tumors in MR images Bioinformatics Brain Computer aided diagnosis Convolutional neural networks Image classification Image enhancement Learning systems Magnetic resonance Magnetic resonance imaging Network architecture Transfer learning Tumors LEMB |
title_short |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_full |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_fullStr |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_full_unstemmed |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_sort |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
dc.creator.fl_str_mv |
Osorio-Barone, A. Contreras Ortiz, Sonia Helena |
dc.contributor.author.none.fl_str_mv |
Osorio-Barone, A. Contreras Ortiz, Sonia Helena |
dc.subject.keywords.spa.fl_str_mv |
Bioinformatics Brain Computer aided diagnosis Convolutional neural networks Image classification Image enhancement Learning systems Magnetic resonance Magnetic resonance imaging Network architecture Transfer learning Tumors |
topic |
Bioinformatics Brain Computer aided diagnosis Convolutional neural networks Image classification Image enhancement Learning systems Magnetic resonance Magnetic resonance imaging Network architecture Transfer learning Tumors LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance (MR) images. The architectures of the present study were VGG16, ResNet50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet50 with 94.89%, and finally, Xception with 92.18%. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11-03 |
dc.date.accessioned.none.fl_str_mv |
2021-02-08T16:37:43Z |
dc.date.available.none.fl_str_mv |
2021-02-08T16:37:43Z |
dc.date.submitted.none.fl_str_mv |
2021-02-08 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
A. Osorio-Barone and S. H. Contreras-Ortiz "Deep learning architectures for the analysis and classification of brain tumors in MR images", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830B (3 November 2020); https://doi.org/10.1117/12.2579618 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9955 |
dc.identifier.url.none.fl_str_mv |
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=1 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2579618 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
A. Osorio-Barone and S. H. Contreras-Ortiz "Deep learning architectures for the analysis and classification of brain tumors in MR images", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830B (3 November 2020); https://doi.org/10.1117/12.2579618 10.1117/12.2579618 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9955 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=1 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Proceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830B (2020) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/1/123.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/3/123.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/4/123.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 b345a48d565b0cd2d23d56700a322fd8 5489dd7b9335f8e0d85b5ee7e28a9c09 bc6160faadc0ddfc012b69057ef67461 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021695114051584 |
spelling |
Osorio-Barone, A.9dc91c41-f76a-4994-838c-fa39f38e1beeContreras Ortiz, Sonia Helena690f7c84-d6e0-464a-b059-47146b2f92f52021-02-08T16:37:43Z2021-02-08T16:37:43Z2020-11-032021-02-08A. Osorio-Barone and S. H. Contreras-Ortiz "Deep learning architectures for the analysis and classification of brain tumors in MR images", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830B (3 November 2020); https://doi.org/10.1117/12.2579618https://hdl.handle.net/20.500.12585/9955https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/115830B/Deep-learning-architectures-for-the-analysis-and-classification-of-brain/10.1117/12.2579618.short?SSO=110.1117/12.2579618Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance (MR) images. The architectures of the present study were VGG16, ResNet50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet50 with 94.89%, and finally, Xception with 92.18%.application/pdfengProceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830B (2020)Deep learning architectures for the analysis and classification of brain tumors in MR imagesinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85BioinformaticsBrainComputer aided diagnosisConvolutional neural networksImage classificationImage enhancementLearning systemsMagnetic resonanceMagnetic resonance imagingNetwork architectureTransfer learningTumorsLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasPúblico generalWorld Health Organization—Cancer. Cited 2169 times. Accessed: 2020-07-14 https://www.who.int/health-topics/cancer#tab=tab_1Gladson, C.L., Prayson, R.A., Liu, W.M. The pathobiology of glioma tumors (Open Access) (2010) Annual Review of Pathology: Mechanisms of Disease, 5, pp. 33-50. Cited 142 times. doi: 10.1146/annurev-pathol-121808-102109Shimon, I., Melmed, S. Pituitary Tumor Pathogenesis (1997) Journal of Clinical Endocrinology and Metabolism, 82 (6), pp. 1675-1681. Cited 145 times. http://jcem.endojournals.org doi: 10.1210/jc.82.6.1675Afshar, P., Plataniotis, K.N., Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries (2019) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, art. no. 8683759, pp. 1368-1372. Cited 38 times. ISBN: 978-147998131-1 doi: 10.1109/ICASSP.2019.8683759Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., (...), Feng, Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition (Open Access) (2015) PLoS ONE, 10 (10), art. no. e0140381. Cited 119 times. http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0140381&representation=PDF doi: 10.1371/journal.pone.0140381Rehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning (2020) Circuits, Systems, and Signal Processing, 39 (2), pp. 757-775. Cited 26 times. http://www.springer.com/sgw/cda/frontpage/0,11855,5-40109-70-1176077-0,00.html doi: 10.1007/s00034-019-01246-3Saxena, P., Maheshwari, A., Maheshwari, S. (2019) Predictive Modeling of Brain Tumor: A Deep Learning Approach. Cited 3 times. arXiv preprintDong, H., Yang, G., Liu, F., Mo, Y., Guo, Y. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks (Open Access) (2017) Communications in Computer and Information Science, 723, pp. 506-517. Cited 207 times. http://www.springer.com/series/7899 ISBN: 978-331960963-8 doi: 10.1007/978-3-319-60964-5_44Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. Cited 20079 times. arXiv preprintChollet, F. Xception: Deep learning with depthwise separable convolutions (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 1800-1807. Cited 1791 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.195He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 37128 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90http://purl.org/coar/resource_type/c_c94fLICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52ORIGINAL123.pdf123.pdfAbstractapplication/pdf66472https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/1/123.pdfb345a48d565b0cd2d23d56700a322fd8MD51TEXT123.pdf.txt123.pdf.txtExtracted texttext/plain1171https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/3/123.pdf.txt5489dd7b9335f8e0d85b5ee7e28a9c09MD53THUMBNAIL123.pdf.jpg123.pdf.jpgGenerated Thumbnailimage/jpeg51945https://repositorio.utb.edu.co/bitstream/20.500.12585/9955/4/123.pdf.jpgbc6160faadc0ddfc012b69057ef67461MD5420.500.12585/9955oai:repositorio.utb.edu.co:20.500.12585/99552023-05-25 15:48:03.736Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |