Genericity of Homeomorphisms with Full Mean Hausdorff Dimension

It is well known that the presence of horseshoes leads to positive entropy. If our goal is to construct a continuous map with infinite entropy, we can consider an infinite sequence of horseshoes, ensuring an unbounded number of legs. Estimating the exact values of both the metric mean dimension and...

Full description

Autores:
Muentes Acevedo, Jeovanny de Jesus
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12668
Acceso en línea:
https://hdl.handle.net/20.500.12585/12668
Palabra clave:
Mean dimension
Metric mean dimension
Mean Hausdorff dimension
Hausdorff dimension
Topological entropy
LEMB
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id UTB2_080b17be8934ebae8f667bdb7ff8963b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12668
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
title Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
spellingShingle Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
Mean dimension
Metric mean dimension
Mean Hausdorff dimension
Hausdorff dimension
Topological entropy
LEMB
title_short Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
title_full Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
title_fullStr Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
title_full_unstemmed Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
title_sort Genericity of Homeomorphisms with Full Mean Hausdorff Dimension
dc.creator.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
dc.contributor.author.none.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
dc.subject.keywords.spa.fl_str_mv Mean dimension
Metric mean dimension
Mean Hausdorff dimension
Hausdorff dimension
Topological entropy
topic Mean dimension
Metric mean dimension
Mean Hausdorff dimension
Hausdorff dimension
Topological entropy
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description It is well known that the presence of horseshoes leads to positive entropy. If our goal is to construct a continuous map with infinite entropy, we can consider an infinite sequence of horseshoes, ensuring an unbounded number of legs. Estimating the exact values of both the metric mean dimension and mean Hausdorff dimension for a homeomorphism is a challenging task. We need to establish a precise relationship between the sizes of the horseshoes and the number of appropriated legs to control both quantities. Let N be an n -dimensional compact Riemannian manifold, where n⩾2 , and α∈[0,n] . In this paper, we construct a homeomorphism ϕ:N→N with mean Hausdorff dimension equal to α . Furthermore, we prove that the set of homeomorphisms on N with both lower and upper mean Hausdorff dimensions equal to α is dense in Hom(N) . Additionally, we establish that the set of homeomorphisms with upper mean Hausdorff dimension equal to n contains a residual subset of Hom(N).
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-07T11:56:21Z
dc.date.available.none.fl_str_mv 2024-05-07T11:56:21Z
dc.date.issued.none.fl_str_mv 2024-04-18
dc.date.submitted.none.fl_str_mv 2024-05-06
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Acevedo, J.M. Genericity of Homeomorphisms with Full Mean Hausdorff Dimension. Regul. Chaot. Dyn. (2024). https://doi.org/10.1134/S1560354724510014
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12668
dc.identifier.doi.none.fl_str_mv 10.1134/S1560354724510014
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo, J.M. Genericity of Homeomorphisms with Full Mean Hausdorff Dimension. Regul. Chaot. Dyn. (2024). https://doi.org/10.1134/S1560354724510014
10.1134/S1560354724510014
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12668
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.format.extent.none.fl_str_mv 17
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Regular and Chaotic Dynamics
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/1/asd.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/4/asd.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/3/asd.pdf.jpg
bitstream.checksum.fl_str_mv ab4aa09568db8c9f6c741233ea82379e
e20ad307a1c5f3f25af9304a7a7c86b6
ad750f5b21260535f748bf376d6969ed
9552c85779b6e1d1ea74d76daff25a20
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021775263006720
spelling Muentes Acevedo, Jeovanny de Jesusec5c0208-d53f-44d4-a347-fdb3d28db2abColombia2024-05-07T11:56:21Z2024-05-07T11:56:21Z2024-04-182024-05-06Acevedo, J.M. Genericity of Homeomorphisms with Full Mean Hausdorff Dimension. Regul. Chaot. Dyn. (2024). https://doi.org/10.1134/S1560354724510014https://hdl.handle.net/20.500.12585/1266810.1134/S1560354724510014Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIt is well known that the presence of horseshoes leads to positive entropy. If our goal is to construct a continuous map with infinite entropy, we can consider an infinite sequence of horseshoes, ensuring an unbounded number of legs. Estimating the exact values of both the metric mean dimension and mean Hausdorff dimension for a homeomorphism is a challenging task. We need to establish a precise relationship between the sizes of the horseshoes and the number of appropriated legs to control both quantities. Let N be an n -dimensional compact Riemannian manifold, where n⩾2 , and α∈[0,n] . In this paper, we construct a homeomorphism ϕ:N→N with mean Hausdorff dimension equal to α . Furthermore, we prove that the set of homeomorphisms on N with both lower and upper mean Hausdorff dimensions equal to α is dense in Hom(N) . Additionally, we establish that the set of homeomorphisms with upper mean Hausdorff dimension equal to n contains a residual subset of Hom(N).17application/pdfengRegular and Chaotic DynamicsGenericity of Homeomorphisms with Full Mean Hausdorff Dimensioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Mean dimensionMetric mean dimensionMean Hausdorff dimensionHausdorff dimensionTopological entropyLEMBinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecCartagena de IndiasCampus TecnológicoInvestigadoresAcevedo, J. M., Genericity of Continuous Maps with Positive Metric Mean Dimension, Results Math., 2022, vol. 77, no. 1, Paper No. 2, 30 pp.Acevedo, J. M., Romaña, S., and Arias, R., Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms, J. Dyn. Diff. Equat., 2024 (in press).Acevedo, J. M., Baraviera, A., Becker, A. J., and Scopel, É., Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric, Preprint (2022).Artin, M. and Mazur, B., On Periodic Points, Ann. of Math. (2), 1965, vol. 81, pp. 82–99.Backes, L. and Rodrigues, F. B., A Variational Principle for the Metric Mean Dimension of Level Sets, IEEE Trans. Inform. Theory, 2023, vol. 69, no. 9, pp. 5485–5496.Cheng, D., Li, Zh., and Selmi, B., Upper Metric Mean Dimensions with Potential on Subsets, Nonlinearity, 2021, vol. 34, no. 2, pp. 852–867.Dou, D., Minimal Subshifts of Arbitrary Mean Topological Dimension, Discrete Contin. Dyn. Syst., 2017, vol. 37, no. 3, pp. 1411–1424.Carvalho, M., Rodrigues, F. B., and Varandas, P., Generic Homeomorphisms Have Full Metric Mean Dimension, Ergodic Theory Dynam. Systems, 2022, vol. 42, no. 1, pp. 40–64.Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 3rd ed., Chichester: Wiley, 2014.Furstenberg, H., Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Diophantine Approximation, Math. Systems Theory, 1967, vol. 1, no. 1, pp. 1–49.Gromov, M., Topological Invariants of Dynamical Systems and Spaces of Holomorphic Maps: 1, Math. Phys. Anal. Geom., 1999, vol. 2, no. 4, pp. 323–415.Gutman, Y., Embedding Topological Dynamical Systems with Periodic Points in Cubical Shifts, Ergodic Theory Dynam. Systems, 2017, vol. 37, no. 2, pp. 512–538.Gutman, Y., Qiao, Y., and Tsukamoto, M., Application of Signal Analysis to the Embedding Problem of -Actions, Geom. Funct. Anal., 2019, vol. 29, no. 5, pp. 1440–1502.Hurley, M., On Proofs of the General Density Theorem, Proc. Amer. Math. Soc., 1996, vol. 124, no. 4, pp. 1305–1309.Lindenstrauss, E. and Tsukamoto, M., Double Variational Principle for Mean Dimension, Geom. Funct. Anal., 2019, vol. 29, no. 4, pp. 1048–1109.Lindenstrauss, E. and Tsukamoto, M., From Rate Distortion Theory to Metric Mean Dimension: Variational Principle, IEEE Trans. Inform. Theory, 2018, vol. 64, no. 5, pp. 3590–3609.Lindenstrauss, E. and Weiss, B., Mean Topological Dimension, Israel J. Math., 2000, vol. 115, no. 1, pp. 1–24.Lindenstrauss, E., Mean Dimension, Small Entropy Factors and an Embedding Theorem, Inst. Hautes Études Sci. Publ. Math., 1999, no. 89, pp. 227–262.Liu, Y., Selmi, B., and Li, Zh., On the Mean Fractal Dimensions of the Cartesian Product Sets, Chaos Solitons Fractals, 2024, vol. 180, Paper No. 114503, 9 pp.Ma, X., Yang, J., and Chen, E., Mean Topological Dimension for Random Bundle Transformations, Ergodic Theory Dynam. Systems, 2019, vol. 39, no. 4, pp. 1020–1041.Tsukamoto, M., Mean Dimension of Full Shifts, Israel J. Math., 2019, vol. 230, no. 1, pp. 183–193.Tsukamoto, M., Mean Hausdorff Dimension of Some Infinite Dimensional Fractals, https://arxiv.org/abs/2209.00512 (2022).Velozo, A. and Velozo, R., Rate Distortion Theory, Metric Mean Dimension and Measure Theoretic Entropy, https://arxiv.org/abs/1707.05762 (2017).Walters, P., An Introduction to Ergodic Theory, Grad. Texts in Math., vol. 79, Berlin: Springer, 2000.Yang, R., Chen, E., and Zhou, X., Bowen’s Equations for Upper Metric Mean Dimension with Potential, Nonlinearity, 2022, vol. 35, no. 9, pp. 4905–4938.Yano, K., A Remark on the Topological Entropy of Homeomorphisms, Invent. Math., 1980, vol. 59, no. 3, pp. 215–220.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALasd.pdfasd.pdfArtículo principalapplication/pdf260003https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/1/asd.pdfab4aa09568db8c9f6c741233ea82379eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTasd.pdf.txtasd.pdf.txtExtracted texttext/plain8https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/4/asd.pdf.txtad750f5b21260535f748bf376d6969edMD54THUMBNAILasd.pdf.jpgasd.pdf.jpgGenerated Thumbnailimage/jpeg5871https://repositorio.utb.edu.co/bitstream/20.500.12585/12668/3/asd.pdf.jpg9552c85779b6e1d1ea74d76daff25a20MD5320.500.12585/12668oai:repositorio.utb.edu.co:20.500.12585/126682024-05-09 00:16:24.406Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=