Overall heat transfer coefficient optimization in a spiral-plate heat exchanger

Heat exchangers are widely used in the industry to allow the heat transfer between two fluids. For that reason, correctly sizing said devices poses a design problem in order to guarantee the efficiency and appropriate conditions of the equipment and the processes. In this paper, the geometry of a sp...

Full description

Autores:
Rodriguez-Cabal, M A
Arias Londoño, A
Ardila-Marin, J G
Grisales-Noreña L.F.
Castro-Vargas, A
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10001
Acceso en línea:
https://hdl.handle.net/20.500.12585/10001
https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012012
Palabra clave:
Entropy
Heat transfer
Energy
Entransy
Entropy
Spiral plate heat exchangers
Spiral turns
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_07ad0dbe5eb64b679cd7f111527a9789
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10001
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
title Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
spellingShingle Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
Entropy
Heat transfer
Energy
Entransy
Entropy
Spiral plate heat exchangers
Spiral turns
LEMB
title_short Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
title_full Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
title_fullStr Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
title_full_unstemmed Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
title_sort Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
dc.creator.fl_str_mv Rodriguez-Cabal, M A
Arias Londoño, A
Ardila-Marin, J G
Grisales-Noreña L.F.
Castro-Vargas, A
dc.contributor.author.none.fl_str_mv Rodriguez-Cabal, M A
Arias Londoño, A
Ardila-Marin, J G
Grisales-Noreña L.F.
Castro-Vargas, A
dc.subject.keywords.spa.fl_str_mv Entropy
Heat transfer
Energy
Entransy
Entropy
Spiral plate heat exchangers
Spiral turns
topic Entropy
Heat transfer
Energy
Entransy
Entropy
Spiral plate heat exchangers
Spiral turns
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Heat exchangers are widely used in the industry to allow the heat transfer between two fluids. For that reason, correctly sizing said devices poses a design problem in order to guarantee the efficiency and appropriate conditions of the equipment and the processes. In this paper, the geometry of a spiral-plate heat exchanger is optimized by means of a particle swarm optimization algorithm, whose objective function is the maximization of the overall heat transfer coefficient. The process variables considered in the model were channel spacing, spiral length, spiral width, and wall thickness. The mathematical model and the particle swarm optimization were programmed in Matlab®, where the parameters and the constraints were defined, limiting the pressure drop and guaranteeing the heat transfer required for a study case taken from Minton's work. In this study, the overall heat transfer coefficient was increased by 12.73% in comparison with the original design.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-15T16:18:38Z
dc.date.available.none.fl_str_mv 2021-02-15T16:18:38Z
dc.date.submitted.none.fl_str_mv 2021-02-12
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv M A Rodriguez-Cabal et al 2020 J. Phys.: Conf. Ser. 1671 01201
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10001
dc.identifier.url.none.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012012
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1671/1/012012
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv M A Rodriguez-Cabal et al 2020 J. Phys.: Conf. Ser. 1671 01201
10.1088/1742-6596/1671/1/012012
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10001
https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012012
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Physics: Conference Series 1671 (2020) 012012
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/1/161.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/4/161.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/5/161.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
218c3747e187b0510c1bbdd3408c5b74
e20ad307a1c5f3f25af9304a7a7c86b6
7efd19cb0b7dde398aece410c2ae30c1
42ec669a9602e76589bdba5e41dfcaf0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021722647560192
spelling Rodriguez-Cabal, M A1be89097-913e-4af3-9487-97492a811f34Arias Londoño, A31bcb75b-a482-4477-aacb-274dc59768d3Ardila-Marin, J G6db261c2-a094-4eda-aa79-2d0bad94dce1Grisales-Noreña L.F.98ba5e2d-fa38-40c5-a05c-d73772e8ab17Castro-Vargas, A4b28e956-c1b0-4912-b6c9-893de5d1732f2021-02-15T16:18:38Z2021-02-15T16:18:38Z20202021-02-12M A Rodriguez-Cabal et al 2020 J. Phys.: Conf. Ser. 1671 01201https://hdl.handle.net/20.500.12585/10001https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/01201210.1088/1742-6596/1671/1/012012Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarHeat exchangers are widely used in the industry to allow the heat transfer between two fluids. For that reason, correctly sizing said devices poses a design problem in order to guarantee the efficiency and appropriate conditions of the equipment and the processes. In this paper, the geometry of a spiral-plate heat exchanger is optimized by means of a particle swarm optimization algorithm, whose objective function is the maximization of the overall heat transfer coefficient. The process variables considered in the model were channel spacing, spiral length, spiral width, and wall thickness. The mathematical model and the particle swarm optimization were programmed in Matlab®, where the parameters and the constraints were defined, limiting the pressure drop and guaranteeing the heat transfer required for a study case taken from Minton's work. In this study, the overall heat transfer coefficient was increased by 12.73% in comparison with the original design.7 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series 1671 (2020) 012012Overall heat transfer coefficient optimization in a spiral-plate heat exchangerinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85EntropyHeat transferEnergyEntransyEntropySpiral plate heat exchangersSpiral turnsLEMBCartagena de IndiasInvestigadoresÇengel Y, Boles M 2006 Thermodynamics an Engineering Approach 8th Edition (New York: McGraw Hill)Azad A V, Amidpour M 2011 Economic optimization of shell and tube heat exchanger based on constructal theory Energy 36(2) 1087–1096Incropera F P, DeWitt D P 2009 Fundamentos de la Transferencia de Calor 4 Edition (México: Prentice Hall)Gallego R A, Escobar A H, Toro E M 2008 Técnicas Metaheurísticas de Optimización 2nd Edition (Pereira: Universidad Tecnológica de Pereira)Fettaka S, Thibault J, Gupta Y 2013 Design of shell-and-tube heat exchangers using multiobjective optimization Int. J. Heat Mass Transf. 60(1) 343–354Segundo E, Mariani V, Coelho L 2015 Spiral heat exchanger optimization using wind driven algorithm XII Simpósio Brasileiro de Automação Inteligente (XII SBAI) (Natal: Universidade Federal do Rio Grande do Norte)Patel V K, Rao R V 2010 Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique Appl. Therm. Eng. 30(11–12) 1417–1425Lord Minton R C, Slusser R P 1970 Design of heat exchangers Chem. Eng. 77(2) 96-118Vasconcelos Segundo E H, Mariani V C, dos Santos Coelho L 2018 Design of spiral heat exchanger from economic and thermal point of view using a tuned wind-driven optimizer J. Brazilian Soc. Mech. Sci. Eng. 40(4) 212Perry S, Perry R, Green D, Maloney J 1997 Perry’s Chemical Engineers’ Handbook 7th Edition (New York: McGraw-Hill)Kennedy J, Eberhart R 1995 Particle swarm optimization Neural Networks Proceedings of ICNN'95- International Conference on Neural Networks (Australia: IEEE)Moraes A O S, Mitre J F, Lage P L C, Secchi A R 2015 A robust parallel algorithm of the particle swarm optimization method for large dimensional engineering problems Appl. Math. Model. 39(14) 4223–4241http://purl.org/coar/resource_type/c_c94fCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINAL161.pdf161.pdfPonenciaapplication/pdf876145https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/1/161.pdf218c3747e187b0510c1bbdd3408c5b74MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT161.pdf.txt161.pdf.txtExtracted texttext/plain18038https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/4/161.pdf.txt7efd19cb0b7dde398aece410c2ae30c1MD54THUMBNAIL161.pdf.jpg161.pdf.jpgGenerated Thumbnailimage/jpeg33124https://repositorio.utb.edu.co/bitstream/20.500.12585/10001/5/161.pdf.jpg42ec669a9602e76589bdba5e41dfcaf0MD5520.500.12585/10001oai:repositorio.utb.edu.co:20.500.12585/100012023-05-26 11:07:12.917Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=