Towards better BBB passage prediction using an extensive and curated data set

In the present report, the challenging task of drug delivery across the blood-brain barrier (BBB) is addressed via a computational approach. The BBB passage was modeled using classification and regression schemes on a novel extensive and curated data set (the largest to the best of our knowledge) in...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9016
Acceso en línea:
https://hdl.handle.net/20.500.12585/9016
Palabra clave:
BBB endpoint
Blood£brain barrier
Dragon descriptor
Linear discriminant analysis
Multiple linear regression
P-glycoprotein
Quantitative structure pharmacokinetic (property) relationship
Central nervous system agents
Multidrug resistance protein
Octanol
Water
Article
Blood-Brain Barrier
Brain disease
Central nervous system
Chemical structure
Cluster analysis
Computer program
Data analysis
Discriminant analysis
Drug penetration
Drug research
Drug targeting
Drug transport
Genetic algorithm
High throughput screening
Human
Linear discriminant analysis
Machine learning
Molecular weight
Molecule
Multiple linear regression analysis
Partition coefficient
Prediction
Priority journal
Quantitative structure activity relation
Quantitative structure pharmacokinetic relation
Statistical analysis
Statistical model
Statistical parameters
Animal
Biological model
Blood-Brain Barrier
Computer simulation
Physiology
Animals
Blood-Brain Barrier
Computer simulation
Humans
Models, Cardiovascular
Models, Neurological
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_07ac082520adbabed5ec8650bc80123e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9016
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Towards better BBB passage prediction using an extensive and curated data set
title Towards better BBB passage prediction using an extensive and curated data set
spellingShingle Towards better BBB passage prediction using an extensive and curated data set
BBB endpoint
Blood£brain barrier
Dragon descriptor
Linear discriminant analysis
Multiple linear regression
P-glycoprotein
Quantitative structure pharmacokinetic (property) relationship
Central nervous system agents
Multidrug resistance protein
Octanol
Water
Article
Blood-Brain Barrier
Brain disease
Central nervous system
Chemical structure
Cluster analysis
Computer program
Data analysis
Discriminant analysis
Drug penetration
Drug research
Drug targeting
Drug transport
Genetic algorithm
High throughput screening
Human
Linear discriminant analysis
Machine learning
Molecular weight
Molecule
Multiple linear regression analysis
Partition coefficient
Prediction
Priority journal
Quantitative structure activity relation
Quantitative structure pharmacokinetic relation
Statistical analysis
Statistical model
Statistical parameters
Animal
Biological model
Blood-Brain Barrier
Computer simulation
Physiology
Animals
Blood-Brain Barrier
Computer simulation
Humans
Models, Cardiovascular
Models, Neurological
title_short Towards better BBB passage prediction using an extensive and curated data set
title_full Towards better BBB passage prediction using an extensive and curated data set
title_fullStr Towards better BBB passage prediction using an extensive and curated data set
title_full_unstemmed Towards better BBB passage prediction using an extensive and curated data set
title_sort Towards better BBB passage prediction using an extensive and curated data set
dc.subject.keywords.none.fl_str_mv BBB endpoint
Blood£brain barrier
Dragon descriptor
Linear discriminant analysis
Multiple linear regression
P-glycoprotein
Quantitative structure pharmacokinetic (property) relationship
Central nervous system agents
Multidrug resistance protein
Octanol
Water
Article
Blood-Brain Barrier
Brain disease
Central nervous system
Chemical structure
Cluster analysis
Computer program
Data analysis
Discriminant analysis
Drug penetration
Drug research
Drug targeting
Drug transport
Genetic algorithm
High throughput screening
Human
Linear discriminant analysis
Machine learning
Molecular weight
Molecule
Multiple linear regression analysis
Partition coefficient
Prediction
Priority journal
Quantitative structure activity relation
Quantitative structure pharmacokinetic relation
Statistical analysis
Statistical model
Statistical parameters
Animal
Biological model
Blood-Brain Barrier
Computer simulation
Physiology
Animals
Blood-Brain Barrier
Computer simulation
Humans
Models, Cardiovascular
Models, Neurological
topic BBB endpoint
Blood£brain barrier
Dragon descriptor
Linear discriminant analysis
Multiple linear regression
P-glycoprotein
Quantitative structure pharmacokinetic (property) relationship
Central nervous system agents
Multidrug resistance protein
Octanol
Water
Article
Blood-Brain Barrier
Brain disease
Central nervous system
Chemical structure
Cluster analysis
Computer program
Data analysis
Discriminant analysis
Drug penetration
Drug research
Drug targeting
Drug transport
Genetic algorithm
High throughput screening
Human
Linear discriminant analysis
Machine learning
Molecular weight
Molecule
Multiple linear regression analysis
Partition coefficient
Prediction
Priority journal
Quantitative structure activity relation
Quantitative structure pharmacokinetic relation
Statistical analysis
Statistical model
Statistical parameters
Animal
Biological model
Blood-Brain Barrier
Computer simulation
Physiology
Animals
Blood-Brain Barrier
Computer simulation
Humans
Models, Cardiovascular
Models, Neurological
description In the present report, the challenging task of drug delivery across the blood-brain barrier (BBB) is addressed via a computational approach. The BBB passage was modeled using classification and regression schemes on a novel extensive and curated data set (the largest to the best of our knowledge) in terms of log BB. Prior to the model development, steps of data analysis that comprise chemical data curation, structural, cutoff and cluster analysis (CA) were conducted. Linear Discriminant Analysis (LDA) and Multiple Linear Regression (MLR) were used to fit classification and correlation functions. The best LDA-based model showed overall accuracies over 85% and 83% for the training and test sets, respectively. Also a MLR-based model with acceptable explanation of more than 69% of the variance in the experimental log BB was developed. A brief and general interpretation of proposed models allowed the estimation on how 'near' our computational approach is to the factors that determine the passage of molecules through the BBB. In a final effort some popular and powerful Machine Learning methods were considered. Comparable or similar performance was observed respect to the simpler linear techniques. Most of the compounds with anomalous behavior were put aside into a set denoted as controversial set and discussion regarding to these compounds is provided. Finally, our results were compared with methodologies previously reported in the literature showing comparable to better results. The results could represent useful tools available and reproducible by all scientific community in the early stages of neuropharmaceutical drug discovery/development projects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:46Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:46Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Molecular Informatics; Vol. 34, Núm. 5; pp. 308-330
dc.identifier.issn.none.fl_str_mv 18681743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9016
dc.identifier.doi.none.fl_str_mv 10.1002/minf.201400118
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55604777000
55665599200
55363486500
56674636400
57204812867
36454896800
26643601100
identifier_str_mv Molecular Informatics; Vol. 34, Núm. 5; pp. 308-330
18681743
10.1002/minf.201400118
Universidad Tecnológica de Bolívar
Repositorio UTB
55604777000
55665599200
55363486500
56674636400
57204812867
36454896800
26643601100
url https://hdl.handle.net/20.500.12585/9016
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930640106&doi=10.1002%2fminf.201400118&partnerID=40&md5=cc3e982e93f411ec6d4cc2f7cece3f6a
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9016/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021685083373568
spelling 2020-03-26T16:32:46Z2020-03-26T16:32:46Z2015Molecular Informatics; Vol. 34, Núm. 5; pp. 308-33018681743https://hdl.handle.net/20.500.12585/901610.1002/minf.201400118Universidad Tecnológica de BolívarRepositorio UTB55604777000556655992005536348650056674636400572048128673645489680026643601100In the present report, the challenging task of drug delivery across the blood-brain barrier (BBB) is addressed via a computational approach. The BBB passage was modeled using classification and regression schemes on a novel extensive and curated data set (the largest to the best of our knowledge) in terms of log BB. Prior to the model development, steps of data analysis that comprise chemical data curation, structural, cutoff and cluster analysis (CA) were conducted. Linear Discriminant Analysis (LDA) and Multiple Linear Regression (MLR) were used to fit classification and correlation functions. The best LDA-based model showed overall accuracies over 85% and 83% for the training and test sets, respectively. Also a MLR-based model with acceptable explanation of more than 69% of the variance in the experimental log BB was developed. A brief and general interpretation of proposed models allowed the estimation on how 'near' our computational approach is to the factors that determine the passage of molecules through the BBB. In a final effort some popular and powerful Machine Learning methods were considered. Comparable or similar performance was observed respect to the simpler linear techniques. Most of the compounds with anomalous behavior were put aside into a set denoted as controversial set and discussion regarding to these compounds is provided. Finally, our results were compared with methodologies previously reported in the literature showing comparable to better results. The results could represent useful tools available and reproducible by all scientific community in the early stages of neuropharmaceutical drug discovery/development projects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.octanol, 111-87-5, 29063-28-3; water, 7732-18-5Recurso electrónicoapplication/pdfengWiley-VCH Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84930640106&doi=10.1002%2fminf.201400118&partnerID=40&md5=cc3e982e93f411ec6d4cc2f7cece3f6aTowards better BBB passage prediction using an extensive and curated data setinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BBB endpointBlood£brain barrierDragon descriptorLinear discriminant analysisMultiple linear regressionP-glycoproteinQuantitative structure pharmacokinetic (property) relationshipCentral nervous system agentsMultidrug resistance proteinOctanolWaterArticleBlood-Brain BarrierBrain diseaseCentral nervous systemChemical structureCluster analysisComputer programData analysisDiscriminant analysisDrug penetrationDrug researchDrug targetingDrug transportGenetic algorithmHigh throughput screeningHumanLinear discriminant analysisMachine learningMolecular weightMoleculeMultiple linear regression analysisPartition coefficientPredictionPriority journalQuantitative structure activity relationQuantitative structure pharmacokinetic relationStatistical analysisStatistical modelStatistical parametersAnimalBiological modelBlood-Brain BarrierComputer simulationPhysiologyAnimalsBlood-Brain BarrierComputer simulationHumansModels, CardiovascularModels, NeurologicalBrito-Sánchez Y.Marrero-Ponce Y.Barigye S.J.Yaber Goenaga, IvánMorell Pérez C.Le-Thi-Thu H.Cherkasov A.Katritzky, A.R., Kuanar, M., Slavov, S., Dobchev, D.A., Fara, D.C., Karelson, M., Acree, W.E., Jr., Varnek, A., (2006) Bioorg. Med. Chem., 14, pp. 4888-4917Pan, D., Iyer, M., Liu, J., Li, Y., Hopfinger, A.J., (2004) J. Chem. Inf. Comput. Sci., 44, pp. 2083-2098Strazielle, N., Ghersi-Egea, J.F., (2013) Mol. Pharmaceutics, 10, p. 1473. , 1491Harati, R., Benech, H., Villégier, A.S., Mabondzo, A., (2013) Mol. Pharmaceutics, 10, p. 1566. , 1580Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., Begley, D.J., (2010) Neurobiol. Discov., 37, pp. 13-25Lindqvist, A., Rip, J., Gaillard, P.J., Björkman, S., Hammarlund-Udenaes, M., (2013) Mol. Pharmaceutics, 10, p. 1533. , 1541Garg, P., Verma, J., (2006) J. Chem. Inf. Model., 46, pp. 289-297Liu, X., Tu, M., Kelly, R.S., Chen, C., Smith, B.J., (2004) Drug Metab. Dispos., 32, pp. 132-139Mensch, J., Oyarzabal, J., Mackie, C., Augustijns, P., (2009) J. Pharm. Sci., 98, pp. 4429-4468Goodwin, J.T., Clark, D.E., (2005) J. Pharmacol. Exp. Ther., 315, pp. 477-483Zhao, Y.H., Abraham, M.H., Ibrahim, A., Fish, P.V., Cole, S., Lewis, M.L., Groot, M.J.D., Reynolds, D.P., (2007) J. Chem. Inf. Model., 47, pp. 170-175Muehlbacher, M., Spitzer, G.M., Liedl, K.R., Kornhuber, J., (2011) J. Comput. Aided. Mol. Des., 25, pp. 1095-1106Pardridge, W.M., (2004) Drug Discov. Today, 9, pp. 392-393Fridén, M., Winiwarter, S., Jerndal, G., Bengtsson, O., Wan, H., Bredberg, U., Hammarlund-Udenaes, M., Antonsson, M., (2009) J. Med. Chem., 52, pp. 6233-6243Lanevskij, K., Japertas, P., Didziapetris, R., Petrauskas, A., (2009) J. Pharm. Sci., 98, pp. 122-134Shen, J., Du, Y., Zhao, Y., Liu, G., Tang, Y., (2008) QSAR Comb. Sci., 27, pp. 704-717Hemmateenejad, B., Miri, R., Safarpour, M.A., Mehdipour, A.R., (2006) J. Comput. Chem., 27, pp. 1125-1135Guerra, A., Paez, J.A., Campillo, N.E., (2008) QSAR Comb. Sci., 27, pp. 586-594Deconinck, E., Zhang, M.H., Coomans, D., Vander Heyden, Y., (2006) J. Chem. Inf. Model., 46, pp. 1410-1419Cherkasov, A., Muratov, E.N., Fourches, D., Varnek, A., Baskin, I.I., Cronin, M., Dearden, J., Tropsha, A., (2013) J. Med. Chem., pp. 4977-5010Williams, A.J., Ekins, S., Tkachenko, V., (2012) Drug Discov. Today, 17, pp. 685-701Tropsha, A., (2010) Mol. Inf., 29, pp. 476-488Norinder, U., Haeberlein, M., (2002) Adv. Drug Deliv. Rev., 54, pp. 291-313Mehdipour, A.R., Hamidi, M., (2009) Drug Discov Today, 14, pp. 1030-1036Clark, D.E., (2003) Drug Discov. Today, 8, pp. 927-933Hammarlund-Udenaes, M., Bredberg, U., Friden, M., (2009) Curr. Top. Med. Chem, 9, pp. 148-162Al-Fahemi, J.H.A., Cooper, D.L., Allan, N.L., (2007) J. Mol. Graph. Model., 26, pp. 607-612Wichmann, K., Diedenhofen, M., Klamt, A., (2007) J. Chem. Inf. Model., 47, pp. 228-233Abraham, M.H., Hersey, A., (2006) Comprehensive Medicinal Chemistry II, 5, pp. 745-766. , in, (Eds: J. B. Taylor, D. J. Triggle), Elsevier, Oxford, ppZhang, Y.H., Xia, Z.N., Qin, L.T., Liu, S.S., (2010) J. Mol. Graph. Model., 29, pp. 214-220Dureja, H., Madan, A.K., (2006) Int. J. Pharm., 323, pp. 27-33Zhang, L., Zhu, H., Oprea, T.I., Golbraikh, A., Tropsha, A., (2008) Pharm. Res., 25, pp. 1902-1914Abraham, M.H., Ibrahim, A., Zhao, Y.H., (2006) J. Pharm. Sci, 95, pp. 2091-2100Fan, Y., Unwalla, R., Denny, R.A., Di, L., Kerns, E.H., Diller, D.J., Humblet, C., (2010) J. Chem. Inf. Model., 50, pp. 1123-1133Chen, H., Winiwarter, S., Fridén, M., Antonsson, M., Engkvista, O., (2011) J. Mol. Graph. Model., 29, pp. 985-995Lanevskij, K., Dapkunas, J., Juska, L., Japertas, P., Didziapetris, R., (2011) J. Pharm. Sci., 100, pp. 2147-2160(2004) 37th Joint Meeting of the Chemicals Committee and Working Party on Chemicals, , Pesticides and Biotechnology, Paris, 17-19 NovemberCecchelli, R., Berezowski, V., Lundquist, S., Culot, M., Renftel, M., Dehouck, M.P., Fenart, L., (2007) Nat. Rev., 6, pp. 650-661Reichel, A., Begley, D.J., Abbott, N.J., (2003) Biol. Res. Protoc., 89, pp. 307-324(2002) ChemDraw, , Version 7.0.1 ed., CambridgeSoft Co, Cambridge(2010) OpenBabel, , Version 2.3.0 ed(2013) JChem, , Version 6.1.2 edY. Marrero-Ponce, C. R. García Jacas, J. R. Valdés Martini, TOMOCOMD-CARDD software (TOpological MOlecular COMputational Design - Computer-Aided Rational Drug Design), (www.tomocomd.com), Santa Clara, Villa Clara, Cuba, 2002 - 2014. The QUBILs' Framework (v1.0) allows easy calculation of algebraic forms-based molecular descriptors. Three modules are included, a) QuBiLs-MAS, b) QuBiLs-MIDAS and c) QuBiLs-POMAS. They are based on the application of mathematical N-linear transformations using 2-4 n-tuple matrix representations. A professional version can be obtained upon request to Y. Marrero-Ponce: ymarrero77@yahoo.esMauri, A., Consonni, V., Pavan, M., Todeschini, R., (2006) MATCH Commun. Math. Comput. Chem., 56, pp. 237-248Deconinck, E., Zhang, M.H., Coomans, D., Vander Heyden, Y., (2007) J. Chemom., 21, pp. 280-291Borota, A., Mracec, M., Gruia, A., Rad-Curpən, R., Ostopovici-Halip, L., Mracec, M., (2011) Eur. J. Med. Chem., 46, pp. 877-884Tebby, C., Mombelli, E., Pandard, P., Péry, A.R.R., (2011) Sci. Total Environ., 409, pp. 3334-3343González, M.P., Suárez, P.L., Fall, Y., Gõmez, G., (2005) Bioorg. Med. Chem. Lett., 15, pp. 5165-5169Casañola-Martín, G.M., Marrero-Ponce, Y., Khan, M.T.H., Ather, A., Khan, K.M., Torrens, F., Rotondo, R., (2007) Eur. J. Med. Chem., 42, pp. 1370-1381Todeschini, R., Consonni, V., (2000) Handbook of Molecular Descriptors, p. 667. , in 11, 1 st ed. (Eds: R. Mannhold, H. Kubinyi, H. Timmerman), Wiley-VCH, Weinheim, Germany, p.Brown, R.D., Martin, Y.C., (1996) J. Chem. Inf. Comput. Sci., 36, pp. 572-584Barnard, J.M., Downs, G.M., (1992) J. Chem. Inf. Comput. Sci., 32, pp. 644-649Johnson, R.A., Wichern, D.W., (1988) Applied Multivariate Statistical Analysis, , in, Prentice-Hall, Englewood Cliffs, NJFarland, J.W.M., Gans, D.J., (1995) Chemometric Methods in Molecular Design, pp. 295-307. , in (Ed: H. van de Waterbeemd), VCH, Weinheim, Germany,(2001) STATISTICA, , Version 6.0 ed., StatSoft Inc, Tulsa, OKWaterbeemd, H.V.D., (1995) Chemometric Methods in Molecular Design, pp. 265-288. , in (Ed: H. van de Waterbeemd), VCH Publishers, Weinheim, Germany,Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H., (2000) Bioinformatics, 16, pp. 412-424Todeschini, R., Consonni, V., Mauri, A., Pavan, M., (2005) 1.0 Ed., , MilanoHopfinger, A.J., Patel, H.C., (1996) Genetic Algorithms in Molecular Modeling, pp. 131-157. , in (Ed: J. Devillers), Academic Press, London,Pavan, M., Consonni, V., Gramatica, P., (2006) Partial Order in Environmental Sciences and Chemistry, pp. 181-217. , in (Eds: R. Brüggeman, L. Carlsen), Springer, Berlin,Le Cessie, S., Van Houwelingen, J.C., (1992) Applied Statistics, 41, pp. 191-201Boser, B.E., Guyon, I.M., Vapnik, V.N., (1992) Proc. 5th Ann. ACM Workshop on Computational Learning Theory, , inCortes, C., Vapnik, V.N., (1995) Machine Learning, 20, pp. 273-297Vapnik, V., (1998) Statistical Learning Theory, , in, Wiley, New YorkRasmussen, C.E., Williams, C.K.I., (2006) Gaussian Processes for Machine Learning, , in, Springer, CambridgeHall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., (2009) SIGKDD Explorations, , 11Li, H., Yap, C., Ung, C., Xue, Y., Cao, Z., Chen, Y., (2005) J. Chem. Inf. Model., 45, pp. 1376-1384Vilar, S., Chakrabarti, M., Costanzi, S., (2010) J. Mol. Graph. Model., 28, pp. 899-903Brito-Sánchez, Y., Castillo-Garit, J.A., Le-Thi-Thu, H., González-Madariaga, Y., Torrens, F., Marrero-Ponce, Y., Rodríguez-Borges, J.E., (2013) SAR QSAR Environ. Res., 24, pp. 235-251Broccatelli, F., Larregieu, C.A., Cruciani, G., Oprea, T.I., Benet, L.Z., (2012) Adv.Drug Deliv. Rev., 64, pp. 95-109Golbraikh, A., Tropsha, A., (2002) J. Mol. Graph Model., 20, pp. 269-276Ertl, P., (2008) Polar Surface Area, in Molecular Drug Properties, , in, 7 (Ed: R. Mannhold), Wiley-VCH, Weinheim, GermanyKonovalov, D.A., Sim, N., Deconink, E., Heyden, Y.V., Coomans, D., (2008) J. Chem. Inf. Model., 48, pp. 370-383Kortagere, S., Chekmarev, D., Welsh, W.J., Ekins, S., (2008) Pharm. Res., 25Obrezanova, O., Csányi, G., Gola, J.M.R., Segall, M.D., (2007) J. Chem. Inf. Model., 47, pp. 1847-1857Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., (1999) J. Comb. Chem., 1, pp. 55-68Platts, J.A., Abraham, M.H., Zhao, Y.H., Hersey, A., Ijaz, L., Butina, D., (2001) Eur. J. Med. Chem., 36, pp. 719-730Gramatica, P., Corradi, M., Consonni, V., (2000) Chemosphere, 41, pp. 763-777Pham-The, H., González-Alvarez, I., Bermejo, M., Mangas Sanjuan, V., Centelles, I., Garrigues, T.M., Cabrera-Pérez, M.A., (2011) Mol. Inf., 30, pp. 376-385Kramer, C., Kalliokoski, T., Gedeck, P., Vulpetti, A., (2012) J. Med. Chem, 55, pp. 5165-5173Feher, M., Sourial, E., Schmidt, J.M., (2000) Int. J. Pharm., 201, pp. 239-247Hou, T., Xu, X., (2002) J. Mol. Model., 8, pp. 337-349Narayanan, R., Gunturi, S.B., (2005) Bioorg. Med. Chem., 13, pp. 3017-3028Fu, X.-C., Wang, G.-P., Shan, H.-L., Liang, W.-Q., Gao, J.-Q., (2008) Eur. J. Pharm. Biopharm., 70, pp. 462-466Luco, J.M., (1999) J. Chem. Inf. Comput. Sci., 39, pp. 396-404Stanton, D.T., Mattioni, B.E., Knittel, J.J., Jurs, P.C., (2004) J. Chem. Inf. Comput. Sci., 44, pp. 1010-1023Konovalov, D.A., Coomans, D., Deconinck, E., Heyden, Y.V., (2007) J. Chem. Inf. Model., 47, pp. 1648-1656Wang, Q., Rager, J.D., Weinstein, K., Kardos, P.S., Dobson, G.L., Li, J., Hidalgo, I.J., (2005) Int. J. Pharm., 288, pp. 349-359Adenot, M., Lahana, R., (2004) J. Chem. Inf. Comput. Sci., 44, pp. 239-248De Lange, E.C.M., Marchandb, S., Van Den Berg, D.J., Van Der Sandt, I.C.J., De Boer, A.G., Delon, A., Bouquet, S., Couet, W., (2000) Eur. J. Pharm. Sci., 12, pp. 85-93Hou, T., Wang, J., Zhang, W., Xu, X., (2007) J. Chem. Inf. Model., 47, pp. 208-218Cabrera, M.A., Bermejo, M., Pérez, M., Ramos, R., (2004) J. Pharm. Sci., 93, pp. 1701-1717Usansky, H.H., Sinko, P.J., (2003) Pharm. Res., 20Garberg, P., Ball, M., Borg, N., Cecchelli, R., Fenart, L., Hurst, R.D., Lindmark, T., Österberg, T., (2005) Toxicol. in Vitro, 19, pp. 299-334Andres, C., Hutter, M.C., (2006) QSAR Comb. Sci., 25, pp. 305-309Di, L., Kerns, E.H., Bezar, I.F., Petusky, S.L., Huang, Y., (2009) J. Pharm. Sci, 98, pp. 1980-1991Urbano-Cuadrado, M., Luque-Ruiz, I., Gõmez-Nieto, M.A., (2007) J. Comput. Chem., 28, pp. 1252-1260Rose, K., Hall, L.H., Kier, L.B., (2002) J. Chem. Inf. Comput.Sci., 42, pp. 651-666Kaznessis, Y.N., Snow, M.E., Blankley, C.J., (2001) J. Comput-Aided Mol. Des., 15, pp. 697-708Crivori, P., Cruciani, G., Carrupt, P.A., Testa, B., (2000) J. Med. Chem., 43, pp. 2204-2216Ooms, F., Weber, P., Carrupt, P.A., Testa, B., (2002) Biochim. Biophys. Acta, 1587, pp. 118-125Hutter, M.C., (2003) J. Comput. Aided. Mol. Des., 17, pp. 415-433Deconinck, E., Zhang, M.H., Petitet, F., Dubus, E., Ijjaali, I., Coomans, D., Heyden, Y.V., (2008) Anal. Chim. Acta, 609, pp. 13-23Obrezanova, O., Gola, J.M.R., Champness, E.J., Segall, M.D., (2008) J. Comput. Aided. Mol. Des., 22, pp. 431-440Yana, A., Lianga, H., Chonga, Y., Niea, X., Yu, C., (2013) SAR QSAR Environ. Res., 24, pp. 61-74http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9016/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9016oai:repositorio.utb.edu.co:20.500.12585/90162023-04-24 08:46:48.965Repositorio Institucional UTBrepositorioutb@utb.edu.co