Towards better BBB passage prediction using an extensive and curated data set
In the present report, the challenging task of drug delivery across the blood-brain barrier (BBB) is addressed via a computational approach. The BBB passage was modeled using classification and regression schemes on a novel extensive and curated data set (the largest to the best of our knowledge) in...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9016
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9016
- Palabra clave:
- BBB endpoint
Blood£brain barrier
Dragon descriptor
Linear discriminant analysis
Multiple linear regression
P-glycoprotein
Quantitative structure pharmacokinetic (property) relationship
Central nervous system agents
Multidrug resistance protein
Octanol
Water
Article
Blood-Brain Barrier
Brain disease
Central nervous system
Chemical structure
Cluster analysis
Computer program
Data analysis
Discriminant analysis
Drug penetration
Drug research
Drug targeting
Drug transport
Genetic algorithm
High throughput screening
Human
Linear discriminant analysis
Machine learning
Molecular weight
Molecule
Multiple linear regression analysis
Partition coefficient
Prediction
Priority journal
Quantitative structure activity relation
Quantitative structure pharmacokinetic relation
Statistical analysis
Statistical model
Statistical parameters
Animal
Biological model
Blood-Brain Barrier
Computer simulation
Physiology
Animals
Blood-Brain Barrier
Computer simulation
Humans
Models, Cardiovascular
Models, Neurological
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_07ac082520adbabed5ec8650bc80123e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9016 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Towards better BBB passage prediction using an extensive and curated data set |
title |
Towards better BBB passage prediction using an extensive and curated data set |
spellingShingle |
Towards better BBB passage prediction using an extensive and curated data set BBB endpoint Blood£brain barrier Dragon descriptor Linear discriminant analysis Multiple linear regression P-glycoprotein Quantitative structure pharmacokinetic (property) relationship Central nervous system agents Multidrug resistance protein Octanol Water Article Blood-Brain Barrier Brain disease Central nervous system Chemical structure Cluster analysis Computer program Data analysis Discriminant analysis Drug penetration Drug research Drug targeting Drug transport Genetic algorithm High throughput screening Human Linear discriminant analysis Machine learning Molecular weight Molecule Multiple linear regression analysis Partition coefficient Prediction Priority journal Quantitative structure activity relation Quantitative structure pharmacokinetic relation Statistical analysis Statistical model Statistical parameters Animal Biological model Blood-Brain Barrier Computer simulation Physiology Animals Blood-Brain Barrier Computer simulation Humans Models, Cardiovascular Models, Neurological |
title_short |
Towards better BBB passage prediction using an extensive and curated data set |
title_full |
Towards better BBB passage prediction using an extensive and curated data set |
title_fullStr |
Towards better BBB passage prediction using an extensive and curated data set |
title_full_unstemmed |
Towards better BBB passage prediction using an extensive and curated data set |
title_sort |
Towards better BBB passage prediction using an extensive and curated data set |
dc.subject.keywords.none.fl_str_mv |
BBB endpoint Blood£brain barrier Dragon descriptor Linear discriminant analysis Multiple linear regression P-glycoprotein Quantitative structure pharmacokinetic (property) relationship Central nervous system agents Multidrug resistance protein Octanol Water Article Blood-Brain Barrier Brain disease Central nervous system Chemical structure Cluster analysis Computer program Data analysis Discriminant analysis Drug penetration Drug research Drug targeting Drug transport Genetic algorithm High throughput screening Human Linear discriminant analysis Machine learning Molecular weight Molecule Multiple linear regression analysis Partition coefficient Prediction Priority journal Quantitative structure activity relation Quantitative structure pharmacokinetic relation Statistical analysis Statistical model Statistical parameters Animal Biological model Blood-Brain Barrier Computer simulation Physiology Animals Blood-Brain Barrier Computer simulation Humans Models, Cardiovascular Models, Neurological |
topic |
BBB endpoint Blood£brain barrier Dragon descriptor Linear discriminant analysis Multiple linear regression P-glycoprotein Quantitative structure pharmacokinetic (property) relationship Central nervous system agents Multidrug resistance protein Octanol Water Article Blood-Brain Barrier Brain disease Central nervous system Chemical structure Cluster analysis Computer program Data analysis Discriminant analysis Drug penetration Drug research Drug targeting Drug transport Genetic algorithm High throughput screening Human Linear discriminant analysis Machine learning Molecular weight Molecule Multiple linear regression analysis Partition coefficient Prediction Priority journal Quantitative structure activity relation Quantitative structure pharmacokinetic relation Statistical analysis Statistical model Statistical parameters Animal Biological model Blood-Brain Barrier Computer simulation Physiology Animals Blood-Brain Barrier Computer simulation Humans Models, Cardiovascular Models, Neurological |
description |
In the present report, the challenging task of drug delivery across the blood-brain barrier (BBB) is addressed via a computational approach. The BBB passage was modeled using classification and regression schemes on a novel extensive and curated data set (the largest to the best of our knowledge) in terms of log BB. Prior to the model development, steps of data analysis that comprise chemical data curation, structural, cutoff and cluster analysis (CA) were conducted. Linear Discriminant Analysis (LDA) and Multiple Linear Regression (MLR) were used to fit classification and correlation functions. The best LDA-based model showed overall accuracies over 85% and 83% for the training and test sets, respectively. Also a MLR-based model with acceptable explanation of more than 69% of the variance in the experimental log BB was developed. A brief and general interpretation of proposed models allowed the estimation on how 'near' our computational approach is to the factors that determine the passage of molecules through the BBB. In a final effort some popular and powerful Machine Learning methods were considered. Comparable or similar performance was observed respect to the simpler linear techniques. Most of the compounds with anomalous behavior were put aside into a set denoted as controversial set and discussion regarding to these compounds is provided. Finally, our results were compared with methodologies previously reported in the literature showing comparable to better results. The results could represent useful tools available and reproducible by all scientific community in the early stages of neuropharmaceutical drug discovery/development projects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Molecular Informatics; Vol. 34, Núm. 5; pp. 308-330 |
dc.identifier.issn.none.fl_str_mv |
18681743 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9016 |
dc.identifier.doi.none.fl_str_mv |
10.1002/minf.201400118 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55604777000 55665599200 55363486500 56674636400 57204812867 36454896800 26643601100 |
identifier_str_mv |
Molecular Informatics; Vol. 34, Núm. 5; pp. 308-330 18681743 10.1002/minf.201400118 Universidad Tecnológica de Bolívar Repositorio UTB 55604777000 55665599200 55363486500 56674636400 57204812867 36454896800 26643601100 |
url |
https://hdl.handle.net/20.500.12585/9016 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley-VCH Verlag |
publisher.none.fl_str_mv |
Wiley-VCH Verlag |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930640106&doi=10.1002%2fminf.201400118&partnerID=40&md5=cc3e982e93f411ec6d4cc2f7cece3f6a |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9016/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021685083373568 |
spelling |
2020-03-26T16:32:46Z2020-03-26T16:32:46Z2015Molecular Informatics; Vol. 34, Núm. 5; pp. 308-33018681743https://hdl.handle.net/20.500.12585/901610.1002/minf.201400118Universidad Tecnológica de BolívarRepositorio UTB55604777000556655992005536348650056674636400572048128673645489680026643601100In the present report, the challenging task of drug delivery across the blood-brain barrier (BBB) is addressed via a computational approach. The BBB passage was modeled using classification and regression schemes on a novel extensive and curated data set (the largest to the best of our knowledge) in terms of log BB. Prior to the model development, steps of data analysis that comprise chemical data curation, structural, cutoff and cluster analysis (CA) were conducted. Linear Discriminant Analysis (LDA) and Multiple Linear Regression (MLR) were used to fit classification and correlation functions. The best LDA-based model showed overall accuracies over 85% and 83% for the training and test sets, respectively. Also a MLR-based model with acceptable explanation of more than 69% of the variance in the experimental log BB was developed. A brief and general interpretation of proposed models allowed the estimation on how 'near' our computational approach is to the factors that determine the passage of molecules through the BBB. In a final effort some popular and powerful Machine Learning methods were considered. Comparable or similar performance was observed respect to the simpler linear techniques. Most of the compounds with anomalous behavior were put aside into a set denoted as controversial set and discussion regarding to these compounds is provided. Finally, our results were compared with methodologies previously reported in the literature showing comparable to better results. The results could represent useful tools available and reproducible by all scientific community in the early stages of neuropharmaceutical drug discovery/development projects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.octanol, 111-87-5, 29063-28-3; water, 7732-18-5Recurso electrónicoapplication/pdfengWiley-VCH Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84930640106&doi=10.1002%2fminf.201400118&partnerID=40&md5=cc3e982e93f411ec6d4cc2f7cece3f6aTowards better BBB passage prediction using an extensive and curated data setinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BBB endpointBlood£brain barrierDragon descriptorLinear discriminant analysisMultiple linear regressionP-glycoproteinQuantitative structure pharmacokinetic (property) relationshipCentral nervous system agentsMultidrug resistance proteinOctanolWaterArticleBlood-Brain BarrierBrain diseaseCentral nervous systemChemical structureCluster analysisComputer programData analysisDiscriminant analysisDrug penetrationDrug researchDrug targetingDrug transportGenetic algorithmHigh throughput screeningHumanLinear discriminant analysisMachine learningMolecular weightMoleculeMultiple linear regression analysisPartition coefficientPredictionPriority journalQuantitative structure activity relationQuantitative structure pharmacokinetic relationStatistical analysisStatistical modelStatistical parametersAnimalBiological modelBlood-Brain BarrierComputer simulationPhysiologyAnimalsBlood-Brain BarrierComputer simulationHumansModels, CardiovascularModels, NeurologicalBrito-Sánchez Y.Marrero-Ponce Y.Barigye S.J.Yaber Goenaga, IvánMorell Pérez C.Le-Thi-Thu H.Cherkasov A.Katritzky, A.R., Kuanar, M., Slavov, S., Dobchev, D.A., Fara, D.C., Karelson, M., Acree, W.E., Jr., Varnek, A., (2006) Bioorg. Med. Chem., 14, pp. 4888-4917Pan, D., Iyer, M., Liu, J., Li, Y., Hopfinger, A.J., (2004) J. Chem. Inf. Comput. Sci., 44, pp. 2083-2098Strazielle, N., Ghersi-Egea, J.F., (2013) Mol. Pharmaceutics, 10, p. 1473. , 1491Harati, R., Benech, H., Villégier, A.S., Mabondzo, A., (2013) Mol. Pharmaceutics, 10, p. 1566. , 1580Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., Begley, D.J., (2010) Neurobiol. Discov., 37, pp. 13-25Lindqvist, A., Rip, J., Gaillard, P.J., Björkman, S., Hammarlund-Udenaes, M., (2013) Mol. Pharmaceutics, 10, p. 1533. , 1541Garg, P., Verma, J., (2006) J. Chem. Inf. Model., 46, pp. 289-297Liu, X., Tu, M., Kelly, R.S., Chen, C., Smith, B.J., (2004) Drug Metab. Dispos., 32, pp. 132-139Mensch, J., Oyarzabal, J., Mackie, C., Augustijns, P., (2009) J. Pharm. Sci., 98, pp. 4429-4468Goodwin, J.T., Clark, D.E., (2005) J. Pharmacol. Exp. Ther., 315, pp. 477-483Zhao, Y.H., Abraham, M.H., Ibrahim, A., Fish, P.V., Cole, S., Lewis, M.L., Groot, M.J.D., Reynolds, D.P., (2007) J. Chem. Inf. Model., 47, pp. 170-175Muehlbacher, M., Spitzer, G.M., Liedl, K.R., Kornhuber, J., (2011) J. Comput. Aided. Mol. Des., 25, pp. 1095-1106Pardridge, W.M., (2004) Drug Discov. Today, 9, pp. 392-393Fridén, M., Winiwarter, S., Jerndal, G., Bengtsson, O., Wan, H., Bredberg, U., Hammarlund-Udenaes, M., Antonsson, M., (2009) J. Med. Chem., 52, pp. 6233-6243Lanevskij, K., Japertas, P., Didziapetris, R., Petrauskas, A., (2009) J. Pharm. Sci., 98, pp. 122-134Shen, J., Du, Y., Zhao, Y., Liu, G., Tang, Y., (2008) QSAR Comb. Sci., 27, pp. 704-717Hemmateenejad, B., Miri, R., Safarpour, M.A., Mehdipour, A.R., (2006) J. Comput. Chem., 27, pp. 1125-1135Guerra, A., Paez, J.A., Campillo, N.E., (2008) QSAR Comb. Sci., 27, pp. 586-594Deconinck, E., Zhang, M.H., Coomans, D., Vander Heyden, Y., (2006) J. Chem. Inf. Model., 46, pp. 1410-1419Cherkasov, A., Muratov, E.N., Fourches, D., Varnek, A., Baskin, I.I., Cronin, M., Dearden, J., Tropsha, A., (2013) J. Med. Chem., pp. 4977-5010Williams, A.J., Ekins, S., Tkachenko, V., (2012) Drug Discov. Today, 17, pp. 685-701Tropsha, A., (2010) Mol. Inf., 29, pp. 476-488Norinder, U., Haeberlein, M., (2002) Adv. Drug Deliv. Rev., 54, pp. 291-313Mehdipour, A.R., Hamidi, M., (2009) Drug Discov Today, 14, pp. 1030-1036Clark, D.E., (2003) Drug Discov. Today, 8, pp. 927-933Hammarlund-Udenaes, M., Bredberg, U., Friden, M., (2009) Curr. Top. Med. Chem, 9, pp. 148-162Al-Fahemi, J.H.A., Cooper, D.L., Allan, N.L., (2007) J. Mol. Graph. Model., 26, pp. 607-612Wichmann, K., Diedenhofen, M., Klamt, A., (2007) J. Chem. Inf. Model., 47, pp. 228-233Abraham, M.H., Hersey, A., (2006) Comprehensive Medicinal Chemistry II, 5, pp. 745-766. , in, (Eds: J. B. Taylor, D. J. Triggle), Elsevier, Oxford, ppZhang, Y.H., Xia, Z.N., Qin, L.T., Liu, S.S., (2010) J. Mol. Graph. Model., 29, pp. 214-220Dureja, H., Madan, A.K., (2006) Int. J. Pharm., 323, pp. 27-33Zhang, L., Zhu, H., Oprea, T.I., Golbraikh, A., Tropsha, A., (2008) Pharm. Res., 25, pp. 1902-1914Abraham, M.H., Ibrahim, A., Zhao, Y.H., (2006) J. Pharm. Sci, 95, pp. 2091-2100Fan, Y., Unwalla, R., Denny, R.A., Di, L., Kerns, E.H., Diller, D.J., Humblet, C., (2010) J. Chem. Inf. Model., 50, pp. 1123-1133Chen, H., Winiwarter, S., Fridén, M., Antonsson, M., Engkvista, O., (2011) J. Mol. Graph. Model., 29, pp. 985-995Lanevskij, K., Dapkunas, J., Juska, L., Japertas, P., Didziapetris, R., (2011) J. Pharm. Sci., 100, pp. 2147-2160(2004) 37th Joint Meeting of the Chemicals Committee and Working Party on Chemicals, , Pesticides and Biotechnology, Paris, 17-19 NovemberCecchelli, R., Berezowski, V., Lundquist, S., Culot, M., Renftel, M., Dehouck, M.P., Fenart, L., (2007) Nat. Rev., 6, pp. 650-661Reichel, A., Begley, D.J., Abbott, N.J., (2003) Biol. Res. Protoc., 89, pp. 307-324(2002) ChemDraw, , Version 7.0.1 ed., CambridgeSoft Co, Cambridge(2010) OpenBabel, , Version 2.3.0 ed(2013) JChem, , Version 6.1.2 edY. Marrero-Ponce, C. R. García Jacas, J. R. Valdés Martini, TOMOCOMD-CARDD software (TOpological MOlecular COMputational Design - Computer-Aided Rational Drug Design), (www.tomocomd.com), Santa Clara, Villa Clara, Cuba, 2002 - 2014. The QUBILs' Framework (v1.0) allows easy calculation of algebraic forms-based molecular descriptors. Three modules are included, a) QuBiLs-MAS, b) QuBiLs-MIDAS and c) QuBiLs-POMAS. They are based on the application of mathematical N-linear transformations using 2-4 n-tuple matrix representations. A professional version can be obtained upon request to Y. Marrero-Ponce: ymarrero77@yahoo.esMauri, A., Consonni, V., Pavan, M., Todeschini, R., (2006) MATCH Commun. Math. Comput. Chem., 56, pp. 237-248Deconinck, E., Zhang, M.H., Coomans, D., Vander Heyden, Y., (2007) J. Chemom., 21, pp. 280-291Borota, A., Mracec, M., Gruia, A., Rad-Curpən, R., Ostopovici-Halip, L., Mracec, M., (2011) Eur. J. Med. Chem., 46, pp. 877-884Tebby, C., Mombelli, E., Pandard, P., Péry, A.R.R., (2011) Sci. Total Environ., 409, pp. 3334-3343González, M.P., Suárez, P.L., Fall, Y., Gõmez, G., (2005) Bioorg. Med. Chem. Lett., 15, pp. 5165-5169Casañola-Martín, G.M., Marrero-Ponce, Y., Khan, M.T.H., Ather, A., Khan, K.M., Torrens, F., Rotondo, R., (2007) Eur. J. Med. Chem., 42, pp. 1370-1381Todeschini, R., Consonni, V., (2000) Handbook of Molecular Descriptors, p. 667. , in 11, 1 st ed. (Eds: R. Mannhold, H. Kubinyi, H. Timmerman), Wiley-VCH, Weinheim, Germany, p.Brown, R.D., Martin, Y.C., (1996) J. Chem. Inf. Comput. Sci., 36, pp. 572-584Barnard, J.M., Downs, G.M., (1992) J. Chem. Inf. Comput. Sci., 32, pp. 644-649Johnson, R.A., Wichern, D.W., (1988) Applied Multivariate Statistical Analysis, , in, Prentice-Hall, Englewood Cliffs, NJFarland, J.W.M., Gans, D.J., (1995) Chemometric Methods in Molecular Design, pp. 295-307. , in (Ed: H. van de Waterbeemd), VCH, Weinheim, Germany,(2001) STATISTICA, , Version 6.0 ed., StatSoft Inc, Tulsa, OKWaterbeemd, H.V.D., (1995) Chemometric Methods in Molecular Design, pp. 265-288. , in (Ed: H. van de Waterbeemd), VCH Publishers, Weinheim, Germany,Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H., (2000) Bioinformatics, 16, pp. 412-424Todeschini, R., Consonni, V., Mauri, A., Pavan, M., (2005) 1.0 Ed., , MilanoHopfinger, A.J., Patel, H.C., (1996) Genetic Algorithms in Molecular Modeling, pp. 131-157. , in (Ed: J. Devillers), Academic Press, London,Pavan, M., Consonni, V., Gramatica, P., (2006) Partial Order in Environmental Sciences and Chemistry, pp. 181-217. , in (Eds: R. Brüggeman, L. Carlsen), Springer, Berlin,Le Cessie, S., Van Houwelingen, J.C., (1992) Applied Statistics, 41, pp. 191-201Boser, B.E., Guyon, I.M., Vapnik, V.N., (1992) Proc. 5th Ann. ACM Workshop on Computational Learning Theory, , inCortes, C., Vapnik, V.N., (1995) Machine Learning, 20, pp. 273-297Vapnik, V., (1998) Statistical Learning Theory, , in, Wiley, New YorkRasmussen, C.E., Williams, C.K.I., (2006) Gaussian Processes for Machine Learning, , in, Springer, CambridgeHall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., (2009) SIGKDD Explorations, , 11Li, H., Yap, C., Ung, C., Xue, Y., Cao, Z., Chen, Y., (2005) J. Chem. Inf. Model., 45, pp. 1376-1384Vilar, S., Chakrabarti, M., Costanzi, S., (2010) J. Mol. Graph. Model., 28, pp. 899-903Brito-Sánchez, Y., Castillo-Garit, J.A., Le-Thi-Thu, H., González-Madariaga, Y., Torrens, F., Marrero-Ponce, Y., Rodríguez-Borges, J.E., (2013) SAR QSAR Environ. Res., 24, pp. 235-251Broccatelli, F., Larregieu, C.A., Cruciani, G., Oprea, T.I., Benet, L.Z., (2012) Adv.Drug Deliv. Rev., 64, pp. 95-109Golbraikh, A., Tropsha, A., (2002) J. Mol. Graph Model., 20, pp. 269-276Ertl, P., (2008) Polar Surface Area, in Molecular Drug Properties, , in, 7 (Ed: R. Mannhold), Wiley-VCH, Weinheim, GermanyKonovalov, D.A., Sim, N., Deconink, E., Heyden, Y.V., Coomans, D., (2008) J. Chem. Inf. Model., 48, pp. 370-383Kortagere, S., Chekmarev, D., Welsh, W.J., Ekins, S., (2008) Pharm. Res., 25Obrezanova, O., Csányi, G., Gola, J.M.R., Segall, M.D., (2007) J. Chem. Inf. Model., 47, pp. 1847-1857Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., (1999) J. Comb. Chem., 1, pp. 55-68Platts, J.A., Abraham, M.H., Zhao, Y.H., Hersey, A., Ijaz, L., Butina, D., (2001) Eur. J. Med. Chem., 36, pp. 719-730Gramatica, P., Corradi, M., Consonni, V., (2000) Chemosphere, 41, pp. 763-777Pham-The, H., González-Alvarez, I., Bermejo, M., Mangas Sanjuan, V., Centelles, I., Garrigues, T.M., Cabrera-Pérez, M.A., (2011) Mol. Inf., 30, pp. 376-385Kramer, C., Kalliokoski, T., Gedeck, P., Vulpetti, A., (2012) J. Med. Chem, 55, pp. 5165-5173Feher, M., Sourial, E., Schmidt, J.M., (2000) Int. J. Pharm., 201, pp. 239-247Hou, T., Xu, X., (2002) J. Mol. Model., 8, pp. 337-349Narayanan, R., Gunturi, S.B., (2005) Bioorg. Med. Chem., 13, pp. 3017-3028Fu, X.-C., Wang, G.-P., Shan, H.-L., Liang, W.-Q., Gao, J.-Q., (2008) Eur. J. Pharm. Biopharm., 70, pp. 462-466Luco, J.M., (1999) J. Chem. Inf. Comput. Sci., 39, pp. 396-404Stanton, D.T., Mattioni, B.E., Knittel, J.J., Jurs, P.C., (2004) J. Chem. Inf. Comput. Sci., 44, pp. 1010-1023Konovalov, D.A., Coomans, D., Deconinck, E., Heyden, Y.V., (2007) J. Chem. Inf. Model., 47, pp. 1648-1656Wang, Q., Rager, J.D., Weinstein, K., Kardos, P.S., Dobson, G.L., Li, J., Hidalgo, I.J., (2005) Int. J. Pharm., 288, pp. 349-359Adenot, M., Lahana, R., (2004) J. Chem. Inf. Comput. Sci., 44, pp. 239-248De Lange, E.C.M., Marchandb, S., Van Den Berg, D.J., Van Der Sandt, I.C.J., De Boer, A.G., Delon, A., Bouquet, S., Couet, W., (2000) Eur. J. Pharm. Sci., 12, pp. 85-93Hou, T., Wang, J., Zhang, W., Xu, X., (2007) J. Chem. Inf. Model., 47, pp. 208-218Cabrera, M.A., Bermejo, M., Pérez, M., Ramos, R., (2004) J. Pharm. Sci., 93, pp. 1701-1717Usansky, H.H., Sinko, P.J., (2003) Pharm. Res., 20Garberg, P., Ball, M., Borg, N., Cecchelli, R., Fenart, L., Hurst, R.D., Lindmark, T., Österberg, T., (2005) Toxicol. in Vitro, 19, pp. 299-334Andres, C., Hutter, M.C., (2006) QSAR Comb. Sci., 25, pp. 305-309Di, L., Kerns, E.H., Bezar, I.F., Petusky, S.L., Huang, Y., (2009) J. Pharm. Sci, 98, pp. 1980-1991Urbano-Cuadrado, M., Luque-Ruiz, I., Gõmez-Nieto, M.A., (2007) J. Comput. Chem., 28, pp. 1252-1260Rose, K., Hall, L.H., Kier, L.B., (2002) J. Chem. Inf. Comput.Sci., 42, pp. 651-666Kaznessis, Y.N., Snow, M.E., Blankley, C.J., (2001) J. Comput-Aided Mol. Des., 15, pp. 697-708Crivori, P., Cruciani, G., Carrupt, P.A., Testa, B., (2000) J. Med. Chem., 43, pp. 2204-2216Ooms, F., Weber, P., Carrupt, P.A., Testa, B., (2002) Biochim. Biophys. Acta, 1587, pp. 118-125Hutter, M.C., (2003) J. Comput. Aided. Mol. Des., 17, pp. 415-433Deconinck, E., Zhang, M.H., Petitet, F., Dubus, E., Ijjaali, I., Coomans, D., Heyden, Y.V., (2008) Anal. Chim. Acta, 609, pp. 13-23Obrezanova, O., Gola, J.M.R., Champness, E.J., Segall, M.D., (2008) J. Comput. Aided. Mol. Des., 22, pp. 431-440Yana, A., Lianga, H., Chonga, Y., Niea, X., Yu, C., (2013) SAR QSAR Environ. Res., 24, pp. 61-74http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9016/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9016oai:repositorio.utb.edu.co:20.500.12585/90162023-04-24 08:46:48.965Repositorio Institucional UTBrepositorioutb@utb.edu.co |