Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems....
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8866
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8866
- Palabra clave:
- Backflow air
Emptying process
Transient two-phase flow
Computational fluid dynamics
Computer simulation
Pipeline
Prediction
Pressure effect
Transient flow
Two phase flow
Two-dimensional flow
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_070dbdc257b67c9f329b0c5cc3cf3a22 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8866 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket |
title |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket |
spellingShingle |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket Backflow air Emptying process Transient two-phase flow Computational fluid dynamics Computer simulation Pipeline Prediction Pressure effect Transient flow Two phase flow Two-dimensional flow |
title_short |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket |
title_full |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket |
title_fullStr |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket |
title_full_unstemmed |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket |
title_sort |
Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket |
dc.subject.keywords.none.fl_str_mv |
Backflow air Emptying process Transient two-phase flow Computational fluid dynamics Computer simulation Pipeline Prediction Pressure effect Transient flow Two phase flow Two-dimensional flow |
topic |
Backflow air Emptying process Transient two-phase flow Computational fluid dynamics Computer simulation Pipeline Prediction Pressure effect Transient flow Two phase flow Two-dimensional flow |
description |
The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems. Current research presents an analysis of the emptying process using experimental and computational results. The phenomenon is simulated using the two-dimensional computational fluid dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A backflow air analysis is also provided based on CFD simulations. The developed models show good ability in the prediction of the sub-atmospheric pressure and the flow velocity in the system. In most of the cases, the 1D and 2D CFD models show similar performance in the prediction of the pressure and the velocity results. The backflow air development can be accurately explained using the CFD model. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Urban Water Journal; Vol. 15, Núm. 8; pp. 769-779 |
dc.identifier.issn.none.fl_str_mv |
1573062X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8866 |
dc.identifier.doi.none.fl_str_mv |
10.1080/1573062X.2018.1540711 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57205420202 57193337460 56074282700 57193113023 35568240000 |
identifier_str_mv |
Urban Water Journal; Vol. 15, Núm. 8; pp. 769-779 1573062X 10.1080/1573062X.2018.1540711 Universidad Tecnológica de Bolívar Repositorio UTB 57205420202 57193337460 56074282700 57193113023 35568240000 |
url |
https://hdl.handle.net/20.500.12585/8866 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057337138&doi=10.1080%2f1573062X.2018.1540711&partnerID=40&md5=b259a713ca12ff2b20a4640171c56e5c |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8866/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021775474819072 |
spelling |
2020-03-26T16:32:31Z2020-03-26T16:32:31Z2018Urban Water Journal; Vol. 15, Núm. 8; pp. 769-7791573062Xhttps://hdl.handle.net/20.500.12585/886610.1080/1573062X.2018.1540711Universidad Tecnológica de BolívarRepositorio UTB5720542020257193337460560742827005719311302335568240000The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems. Current research presents an analysis of the emptying process using experimental and computational results. The phenomenon is simulated using the two-dimensional computational fluid dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A backflow air analysis is also provided based on CFD simulations. The developed models show good ability in the prediction of the sub-atmospheric pressure and the flow velocity in the system. In most of the cases, the 1D and 2D CFD models show similar performance in the prediction of the pressure and the velocity results. The backflow air development can be accurately explained using the CFD model. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia: PD/BD/114459/2016The authors acknowledge the support of the Civil Engineering, Research, and Innovation for Sustainability centre (CERIS) from Instituto Superior Técnico, University of Lisbon, Portugal, for providing the experimental apparatus and the financial support by Fundação para a Ciência e a Tecnologia (FCT), Portugal. Also, the authors want to thank the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014–2020.This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal under grant number PD/BD/114459/2016.Recurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057337138&doi=10.1080%2f1573062X.2018.1540711&partnerID=40&md5=b259a713ca12ff2b20a4640171c56e5cBackflow air and pressure analysis in emptying a pipeline containing an entrapped air pocketinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Backflow airEmptying processTransient two-phase flowComputational fluid dynamicsComputer simulationPipelinePredictionPressure effectTransient flowTwo phase flowTwo-dimensional flowBesharat M.Coronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Viseu M.T.Ramos H.M.ANSYS FLUENT R19.0. 2018. Academic [Computer Software]. Canonsburg, PA: ANSYSBenjamin, T.B., Gravity Currents and Related Phenomena (1968) Journal Fluid Mechanisms, 31 (2), pp. 209-248Besharat, M., Ramos, H.M., Theorical and Experimental Analysis of Pressure Surge in a Two-Phase Compressed Air Vessel (2015) 12th International Conference on Pressure Surges, pp. 729-744. , Dublin: BHR Group, Ireland, andBesharat, M., Viseu, M.T., Ramos, H.M., Experimental Study of Air Vessel Sizing to either Store Energy or Protect the System in the Water Hammer Occurrence (2017) Water, 9 (1), p. 63Besharat, M., Tarinejad, R., Ramos, H.M., The Effect of Water Hammer on a Confined Air Pocket Towards Flow Energy Storage System (2016) Journal of Water Supply: Research and Technology - AQUA, 65 (2), pp. 116-126Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (2016) Water Resources Manage, 30 (8), pp. 2687-2702Bowker, R.P.G., Audibert, G.A., Shah, H.J., Webster, N.A., (1992) Detection, Control, and Correction of Hydrogen Sulfide Corrosion in Existing Wastewater Systems, Office of Wastewater Enforcement and Compliance, , Washington, DC: Office of WaterCebeci, T., (2004) Turbulence Models and Their Applications, , Horizons Pub. Inc., Springer, Long Beach, CaliforniaCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves (2017) Water, 9 (2), p. 98Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket (2018) Urban Water Journal, 15. , acceptedEdmunds, R.C., Air Binding in Pipes (1979) Journal American Water Works Associ, 71 (5), pp. 273-277Escarameia, M., Investigating Hydraulic Removal of Air from Water Pipelines (2007) Proceedings Institute Civ Engineering Water Manage, 160 (1), pp. 25-34Izquierdo, J., Fuertes, V., Cabrera, E., Iglesias, P., Garcia-Serra, J., Pipeline Start-Up with Entrapped Air (1999) Journal Hydraul Researcher, 37 (5), pp. 579-590Kader, B., Temperature and Concentration Profiles in Fully Turbulent Boundary Layers (1981) International Journal of Heat Mass Transfer, 24 (9), pp. 1541-1544Laanearu, J., Hou, D.Q., Tijsseling, A.S., Experimental and Analytical Study of the Air-Water Interface Kinematics during Filling and Emptying of a Horizontal Pipeline (2015) 12th Int. Conf. on Pressure Surges, pp. 625-637. , Dublin: BHR Group, Ireland, andLaanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., Tijsseling, A.S., van’t Westende, J.M.C., Emptying of Large-Scale Pipeline by Pressurized Air (2012) Journal Hydraul Engineering, 138 (12), pp. 1090-1100Launder, B.E., Spalding, D.B., Lectures in Mathematical Models of Turbulence (1972) Academic Press, , London, EnglandLeón, A., Ghidaoui, M., Schmidt, A., Garcia, M., A Robust Two-Equation Model for Transient-Mixed Ows (2010) Journal Hydraul Researcher, 48 (1), pp. 44-56Martins, N., Delgado, J., Ramos, H.M., Covas, D., Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model (2017) Journal Hydraul Researcher, 55 (4), pp. 506-519Martins, S.C., Ramos, H.M., Almeida, A.B., Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems (2015) Journal Hydraul Researcher, 53 (5), pp. 678-686Pozos, O., Gonzalez, C.A., Giesecke, J., Marx, W., Rodal, E.A., Air Entrapped in Gravity Pipeline Systems (2010) Journal Hydraul Researcher, 48 (3), pp. 338-347Ramezani, L., Karney, B., Malekpour, A., Encouraging Effective Air Management in Water Pipelines: A Critical Review (2016) Journal Water Resources Planning Manage, 142 (12), pp. 1-11Richards, R.T., Air Binding in Water Pipelines (1962) Journal AWWA, 68 (6), pp. 719-730Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) Journal Pressure Vessel Technological, 138, p. 031301Triki, A., Water-Hammer Control in Pressurized-Pipe Flow Using an In-Line Polymeric Short-Section (2016) Acta Mechanica, 227, pp. 777-793Vasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) Journal Hydraul Engineering, 134 (7), pp. 984-992Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., Xu, C., CFD Approach for Column Separation in Water Pipelines (2016) Journal Hydraul Engineering, 142 (10), pp. 1-11Wilcox, D.C., (2006) Turbulence Modeling for CFD, , 3rd ed, DCW Industries, Inc., La Cañada, CaliforniaWisner, P.E., Mohsen, F.N., Kouwen, N., Removal of Air from Water Lines by Hydraulic Means (1975) Journal Hydraulics Division, 101 (HY2), pp. 243-257Zhou, F., Hicks, M., Steffler, P.M., Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air (2002) Journal Hydraul Engineering, 128 (6), pp. 625-634Zhou, L., Liu, D., Karney, B., Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline (2013) Journal Hydraul Engineering, 139 (9), pp. 949-959Zhou, L., Liu, D., Ou, C., Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model (2011) Engineering Applications Comparative Fluid Mechanisms, 5 (1), pp. 127-140Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S., Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline (2018) Journal Hydraul Engineering, 144 (8), p. 04018045Zukoski, E.E., Influence of Viscosity, Surface Tension, and Inclination Angle on Motion of Long Bubbles in Closed Tubes (1966) Journal Fluid Mechanisms, 25 (4), pp. 821-837http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8866/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8866oai:repositorio.utb.edu.co:20.500.12585/88662023-05-26 09:43:53.791Repositorio Institucional UTBrepositorioutb@utb.edu.co |