Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket

The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems....

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8866
Acceso en línea:
https://hdl.handle.net/20.500.12585/8866
Palabra clave:
Backflow air
Emptying process
Transient two-phase flow
Computational fluid dynamics
Computer simulation
Pipeline
Prediction
Pressure effect
Transient flow
Two phase flow
Two-dimensional flow
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_070dbdc257b67c9f329b0c5cc3cf3a22
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8866
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
title Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
spellingShingle Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
Backflow air
Emptying process
Transient two-phase flow
Computational fluid dynamics
Computer simulation
Pipeline
Prediction
Pressure effect
Transient flow
Two phase flow
Two-dimensional flow
title_short Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
title_full Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
title_fullStr Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
title_full_unstemmed Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
title_sort Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
dc.subject.keywords.none.fl_str_mv Backflow air
Emptying process
Transient two-phase flow
Computational fluid dynamics
Computer simulation
Pipeline
Prediction
Pressure effect
Transient flow
Two phase flow
Two-dimensional flow
topic Backflow air
Emptying process
Transient two-phase flow
Computational fluid dynamics
Computer simulation
Pipeline
Prediction
Pressure effect
Transient flow
Two phase flow
Two-dimensional flow
description The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems. Current research presents an analysis of the emptying process using experimental and computational results. The phenomenon is simulated using the two-dimensional computational fluid dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A backflow air analysis is also provided based on CFD simulations. The developed models show good ability in the prediction of the sub-atmospheric pressure and the flow velocity in the system. In most of the cases, the 1D and 2D CFD models show similar performance in the prediction of the pressure and the velocity results. The backflow air development can be accurately explained using the CFD model. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:31Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:31Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Urban Water Journal; Vol. 15, Núm. 8; pp. 769-779
dc.identifier.issn.none.fl_str_mv 1573062X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8866
dc.identifier.doi.none.fl_str_mv 10.1080/1573062X.2018.1540711
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57205420202
57193337460
56074282700
57193113023
35568240000
identifier_str_mv Urban Water Journal; Vol. 15, Núm. 8; pp. 769-779
1573062X
10.1080/1573062X.2018.1540711
Universidad Tecnológica de Bolívar
Repositorio UTB
57205420202
57193337460
56074282700
57193113023
35568240000
url https://hdl.handle.net/20.500.12585/8866
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis Ltd.
publisher.none.fl_str_mv Taylor and Francis Ltd.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057337138&doi=10.1080%2f1573062X.2018.1540711&partnerID=40&md5=b259a713ca12ff2b20a4640171c56e5c
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8866/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021775474819072
spelling 2020-03-26T16:32:31Z2020-03-26T16:32:31Z2018Urban Water Journal; Vol. 15, Núm. 8; pp. 769-7791573062Xhttps://hdl.handle.net/20.500.12585/886610.1080/1573062X.2018.1540711Universidad Tecnológica de BolívarRepositorio UTB5720542020257193337460560742827005719311302335568240000The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems. Current research presents an analysis of the emptying process using experimental and computational results. The phenomenon is simulated using the two-dimensional computational fluid dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A backflow air analysis is also provided based on CFD simulations. The developed models show good ability in the prediction of the sub-atmospheric pressure and the flow velocity in the system. In most of the cases, the 1D and 2D CFD models show similar performance in the prediction of the pressure and the velocity results. The backflow air development can be accurately explained using the CFD model. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia Fundação para a Ciência e a Tecnologia: PD/BD/114459/2016The authors acknowledge the support of the Civil Engineering, Research, and Innovation for Sustainability centre (CERIS) from Instituto Superior Técnico, University of Lisbon, Portugal, for providing the experimental apparatus and the financial support by Fundação para a Ciência e a Tecnologia (FCT), Portugal. Also, the authors want to thank the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014–2020.This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal under grant number PD/BD/114459/2016.Recurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057337138&doi=10.1080%2f1573062X.2018.1540711&partnerID=40&md5=b259a713ca12ff2b20a4640171c56e5cBackflow air and pressure analysis in emptying a pipeline containing an entrapped air pocketinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Backflow airEmptying processTransient two-phase flowComputational fluid dynamicsComputer simulationPipelinePredictionPressure effectTransient flowTwo phase flowTwo-dimensional flowBesharat M.Coronado Hernández, Óscar EnriqueFuertes Miquel, Vicente S.Viseu M.T.Ramos H.M.ANSYS FLUENT R19.0. 2018. Academic [Computer Software]. Canonsburg, PA: ANSYSBenjamin, T.B., Gravity Currents and Related Phenomena (1968) Journal Fluid Mechanisms, 31 (2), pp. 209-248Besharat, M., Ramos, H.M., Theorical and Experimental Analysis of Pressure Surge in a Two-Phase Compressed Air Vessel (2015) 12th International Conference on Pressure Surges, pp. 729-744. , Dublin: BHR Group, Ireland, andBesharat, M., Viseu, M.T., Ramos, H.M., Experimental Study of Air Vessel Sizing to either Store Energy or Protect the System in the Water Hammer Occurrence (2017) Water, 9 (1), p. 63Besharat, M., Tarinejad, R., Ramos, H.M., The Effect of Water Hammer on a Confined Air Pocket Towards Flow Energy Storage System (2016) Journal of Water Supply: Research and Technology - AQUA, 65 (2), pp. 116-126Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (2016) Water Resources Manage, 30 (8), pp. 2687-2702Bowker, R.P.G., Audibert, G.A., Shah, H.J., Webster, N.A., (1992) Detection, Control, and Correction of Hydrogen Sulfide Corrosion in Existing Wastewater Systems, Office of Wastewater Enforcement and Compliance, , Washington, DC: Office of WaterCebeci, T., (2004) Turbulence Models and Their Applications, , Horizons Pub. Inc., Springer, Long Beach, CaliforniaCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves (2017) Water, 9 (2), p. 98Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket (2018) Urban Water Journal, 15. , acceptedEdmunds, R.C., Air Binding in Pipes (1979) Journal American Water Works Associ, 71 (5), pp. 273-277Escarameia, M., Investigating Hydraulic Removal of Air from Water Pipelines (2007) Proceedings Institute Civ Engineering Water Manage, 160 (1), pp. 25-34Izquierdo, J., Fuertes, V., Cabrera, E., Iglesias, P., Garcia-Serra, J., Pipeline Start-Up with Entrapped Air (1999) Journal Hydraul Researcher, 37 (5), pp. 579-590Kader, B., Temperature and Concentration Profiles in Fully Turbulent Boundary Layers (1981) International Journal of Heat Mass Transfer, 24 (9), pp. 1541-1544Laanearu, J., Hou, D.Q., Tijsseling, A.S., Experimental and Analytical Study of the Air-Water Interface Kinematics during Filling and Emptying of a Horizontal Pipeline (2015) 12th Int. Conf. on Pressure Surges, pp. 625-637. , Dublin: BHR Group, Ireland, andLaanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., Tijsseling, A.S., van’t Westende, J.M.C., Emptying of Large-Scale Pipeline by Pressurized Air (2012) Journal Hydraul Engineering, 138 (12), pp. 1090-1100Launder, B.E., Spalding, D.B., Lectures in Mathematical Models of Turbulence (1972) Academic Press, , London, EnglandLeón, A., Ghidaoui, M., Schmidt, A., Garcia, M., A Robust Two-Equation Model for Transient-Mixed Ows (2010) Journal Hydraul Researcher, 48 (1), pp. 44-56Martins, N., Delgado, J., Ramos, H.M., Covas, D., Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model (2017) Journal Hydraul Researcher, 55 (4), pp. 506-519Martins, S.C., Ramos, H.M., Almeida, A.B., Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems (2015) Journal Hydraul Researcher, 53 (5), pp. 678-686Pozos, O., Gonzalez, C.A., Giesecke, J., Marx, W., Rodal, E.A., Air Entrapped in Gravity Pipeline Systems (2010) Journal Hydraul Researcher, 48 (3), pp. 338-347Ramezani, L., Karney, B., Malekpour, A., Encouraging Effective Air Management in Water Pipelines: A Critical Review (2016) Journal Water Resources Planning Manage, 142 (12), pp. 1-11Richards, R.T., Air Binding in Water Pipelines (1962) Journal AWWA, 68 (6), pp. 719-730Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) Journal Pressure Vessel Technological, 138, p. 031301Triki, A., Water-Hammer Control in Pressurized-Pipe Flow Using an In-Line Polymeric Short-Section (2016) Acta Mechanica, 227, pp. 777-793Vasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) Journal Hydraul Engineering, 134 (7), pp. 984-992Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., Xu, C., CFD Approach for Column Separation in Water Pipelines (2016) Journal Hydraul Engineering, 142 (10), pp. 1-11Wilcox, D.C., (2006) Turbulence Modeling for CFD, , 3rd ed, DCW Industries, Inc., La Cañada, CaliforniaWisner, P.E., Mohsen, F.N., Kouwen, N., Removal of Air from Water Lines by Hydraulic Means (1975) Journal Hydraulics Division, 101 (HY2), pp. 243-257Zhou, F., Hicks, M., Steffler, P.M., Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air (2002) Journal Hydraul Engineering, 128 (6), pp. 625-634Zhou, L., Liu, D., Karney, B., Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline (2013) Journal Hydraul Engineering, 139 (9), pp. 949-959Zhou, L., Liu, D., Ou, C., Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model (2011) Engineering Applications Comparative Fluid Mechanisms, 5 (1), pp. 127-140Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S., Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline (2018) Journal Hydraul Engineering, 144 (8), p. 04018045Zukoski, E.E., Influence of Viscosity, Surface Tension, and Inclination Angle on Motion of Long Bubbles in Closed Tubes (1966) Journal Fluid Mechanisms, 25 (4), pp. 821-837http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8866/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8866oai:repositorio.utb.edu.co:20.500.12585/88662023-05-26 09:43:53.791Repositorio Institucional UTBrepositorioutb@utb.edu.co