Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso

This paper addresses the problem of the locating and sizing of distributed generators (DGs) in direct current (DC) grids and proposes a hybrid methodology based on a parallel version of the Population-Based Incremental Learning (PPBIL) algorithm and the Particle Swarm Optimization (PSO) method. The...

Full description

Autores:
Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Ramos-Paja, Carlos Andrés
Hernandez-Escobedo, Quetzalcoatl
Perea-Moreno, Alberto-Jesus
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9996
Acceso en línea:
https://hdl.handle.net/20.500.12585/9996
https://www.mdpi.com/2079-9292/9/11/1808
Palabra clave:
Direct current grids
Distributed generation
Combinatorial optimization
Parallel processing tool
Optimal power flow analysis
Power loss reduction
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_06e5792185866e64a9b59a9d58755908
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9996
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
title Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
spellingShingle Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
Direct current grids
Distributed generation
Combinatorial optimization
Parallel processing tool
Optimal power flow analysis
Power loss reduction
LEMB
title_short Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
title_full Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
title_fullStr Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
title_full_unstemmed Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
title_sort Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso
dc.creator.fl_str_mv Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Ramos-Paja, Carlos Andrés
Hernandez-Escobedo, Quetzalcoatl
Perea-Moreno, Alberto-Jesus
dc.contributor.author.none.fl_str_mv Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Ramos-Paja, Carlos Andrés
Hernandez-Escobedo, Quetzalcoatl
Perea-Moreno, Alberto-Jesus
dc.subject.keywords.spa.fl_str_mv Direct current grids
Distributed generation
Combinatorial optimization
Parallel processing tool
Optimal power flow analysis
Power loss reduction
topic Direct current grids
Distributed generation
Combinatorial optimization
Parallel processing tool
Optimal power flow analysis
Power loss reduction
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper addresses the problem of the locating and sizing of distributed generators (DGs) in direct current (DC) grids and proposes a hybrid methodology based on a parallel version of the Population-Based Incremental Learning (PPBIL) algorithm and the Particle Swarm Optimization (PSO) method. The objective function of the method is based on the reduction of the power loss by using a master-slave structure and the consideration of the set of restrictions associated with DC grids in a distributed generation environment. In such a structure, the master stage (PPBIL) finds the location of the generators and the slave stage (PSO) finds the corresponding sizes. For the purpose of comparison, eight additional hybrid methods were formed by using two additional location methods and two additional sizing methods, and this helped in the evaluation of the effectiveness of the proposed solution. Such an evaluation is illustrated with the electrical test systems composed of 10, 21 and 69 buses and simulated on the software, MATLAB. Finally, the results of the simulation demonstrated that the PPBIL–PSO method obtains the best balance between the reduction of power loss and the processing time.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-01
dc.date.accessioned.none.fl_str_mv 2021-02-15T16:09:59Z
dc.date.available.none.fl_str_mv 2021-02-15T16:09:59Z
dc.date.submitted.none.fl_str_mv 2021-02-12
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Grisales-Noreña, Luis F.; Montoya, Oscar D.; Ramos-Paja, Carlos A.; Hernandez-Escobedo, Quetzalcoatl; Perea-Moreno, Alberto-Jesus. 2020. "Optimal Location and Sizing of Distributed Generators in DC Networks Using a Hybrid Method Based on Parallel PBIL and PSO" Electronics 9, no. 11: 1808. https://doi.org/10.3390/electronics9111808
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9996
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2079-9292/9/11/1808
dc.identifier.doi.none.fl_str_mv 10.3390/electronics9111808
dc.identifier.eissn.none.fl_str_mv 2079-9292
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Grisales-Noreña, Luis F.; Montoya, Oscar D.; Ramos-Paja, Carlos A.; Hernandez-Escobedo, Quetzalcoatl; Perea-Moreno, Alberto-Jesus. 2020. "Optimal Location and Sizing of Distributed Generators in DC Networks Using a Hybrid Method Based on Parallel PBIL and PSO" Electronics 9, no. 11: 1808. https://doi.org/10.3390/electronics9111808
10.3390/electronics9111808
2079-9292
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9996
https://www.mdpi.com/2079-9292/9/11/1808
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 27 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics 2020, 9(11), 1808
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/1/156.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/4/156.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/5/156.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
97ba422b858da76409e8d664b9d7ef22
e20ad307a1c5f3f25af9304a7a7c86b6
3bb5612687190bac54308c194cbe83d9
397c232acb22881e29a0a380e85eaa9d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021640244166656
spelling Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Ramos-Paja, Carlos Andrésac1a64c3-4089-49e6-9f7a-b2285dd56903Hernandez-Escobedo, Quetzalcoatl6d13cf66-c5cb-46ae-9a39-26767b00d93dPerea-Moreno, Alberto-Jesuse78da438-8ed5-40ab-a12c-74e84e6d691b2021-02-15T16:09:59Z2021-02-15T16:09:59Z2020-11-012021-02-12Grisales-Noreña, Luis F.; Montoya, Oscar D.; Ramos-Paja, Carlos A.; Hernandez-Escobedo, Quetzalcoatl; Perea-Moreno, Alberto-Jesus. 2020. "Optimal Location and Sizing of Distributed Generators in DC Networks Using a Hybrid Method Based on Parallel PBIL and PSO" Electronics 9, no. 11: 1808. https://doi.org/10.3390/electronics9111808https://hdl.handle.net/20.500.12585/9996https://www.mdpi.com/2079-9292/9/11/180810.3390/electronics91118082079-9292Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper addresses the problem of the locating and sizing of distributed generators (DGs) in direct current (DC) grids and proposes a hybrid methodology based on a parallel version of the Population-Based Incremental Learning (PPBIL) algorithm and the Particle Swarm Optimization (PSO) method. The objective function of the method is based on the reduction of the power loss by using a master-slave structure and the consideration of the set of restrictions associated with DC grids in a distributed generation environment. In such a structure, the master stage (PPBIL) finds the location of the generators and the slave stage (PSO) finds the corresponding sizes. For the purpose of comparison, eight additional hybrid methods were formed by using two additional location methods and two additional sizing methods, and this helped in the evaluation of the effectiveness of the proposed solution. Such an evaluation is illustrated with the electrical test systems composed of 10, 21 and 69 buses and simulated on the software, MATLAB. Finally, the results of the simulation demonstrated that the PPBIL–PSO method obtains the best balance between the reduction of power loss and the processing time.27 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics 2020, 9(11), 1808Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and psoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Direct current gridsDistributed generationCombinatorial optimizationParallel processing toolOptimal power flow analysisPower loss reductionLEMBCartagena de IndiasPúblico generalSchonbergerschonberger, J.; Duke, R.; Round, S.D. DC-Bus Signaling: A Distributed Control Strategy for a Hybrid Renewable Nanogrid. IEEE Trans. Ind. Electron. 2006, 53, 1453–1460. [CrossRef]Montoya, O.D.; Gil-González, W.; Garces, A. Optimal power flow on DC microgrids: A quadratic convex Approximation. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 1018–1022. [CrossRef]Gavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41. [CrossRef]Nordin, N.D.; Rahman, H.A. Comparison of optimum design, sizing, and economic analysis of standalone photovoltaic/battery without and with hydrogen production systems. Renew. Energy 2019, 141, 107–123. [CrossRef]Matayoshi, H.; Kinjo, M.; Rangarajan, S.S.; Ramanathan, G.G.; Hemeida, A.M.; Senjyu, T. Islanding operation scheme for DC microgrid utilizing pseudo Droop control of photovoltaic system. Energy Sustain. Dev. 2020, 55, 95–104. [CrossRef]Wu, Y.; Huangfu, Y.; Ma, R.; Ravey, A.; Chrenko, D. A strong robust DC-DC converter of all-digital high-order sliding mode control for fuel cell power applications. J. Power Sources 2019, 413, 222–232. [CrossRef]Haseltalab, A.; Botto, M.A.; Negenborn, R.R. Model Predictive DC Voltage Control for all-electric ships. Control Eng. Pract. 2019, 90, 133–147. [CrossRef]Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153. [CrossRef]Montoya, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs. IEEE Trans. Circuits Syst. II 2019, 66, 2032–2036. [CrossRef]Garcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [CrossRef]Montoya, O.D.; Grisales-Noreña, L.F.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381. [CrossRef]Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [CrossRef]Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [CrossRef]Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II 2019, 66, 1865–1869. [CrossRef]Montoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23. [CrossRef]Montoya, O.D.; Grisales-nore, L.F. Optimal power dispatch of DGs in DC power grids: A hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem. WSEAS Trans. Power Syst. 2018, 13, 335–346.Wang, P.; Zhang, L.; Xu, D. Optimal Sizing of Distributed Generations in DC Microgrids with Lifespan Estimated Model of Batteries. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 7–10 October 2018; pp. 2045–2049. [CrossRef]Nasir, M.; Iqbal, S.; Khan, H.A. Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 2919–2928. [CrossRef]Kirkegaard, P.; Grohnheit, P. LINPROG—A Linear Programming Solver. Mathematical Description and Model Applications; Forskningscenter Riso: Roskilde, Denmark, 1995.Wang, P.; Wang, W.; Xu, D. Optimal Sizing of Distributed Generations in DC Microgrids with Comprehensive Consideration of System Operation Modes and Operation Targets. IEEE Access 2018, 6, 31129–31140. [CrossRef]Montoya, O.D.; Gil-González, W. A MIQP Model for Optimal Location and Sizing of Dispatchable DGs in DC Networks. 2020. Available online: https://link.springer.com/article/10.1007%2Fs12667-020-00403-x (accessed on 30 August 2020).Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L. Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches. Int. J. Electr. Power Energy Syst. 2020, 115, 105442. [CrossRef]Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. 2020, 23, 527–533. [CrossRef]Sultana, S.; Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 2016, 40, 391–404. [CrossRef]Kumar, B.V.; Srikanth, N. A hybrid approach for optimal location and capacity of UPFC to improve the dynamic stability of the power system. Appl. Soft Comput. 2017, 52, 974–986. [CrossRef]Teimourzadeh, H.; Mohammadi-Ivatloo, B. A three-dimensional group search optimization approach for simultaneous planning of distributed generation units and distribution network reconfiguration. Appl. Soft Comput. 2020, 88, 106012. [CrossRef]Awad, N.H.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N. An efficient Differential Evolution algorithm for stochastic OPF based active–reactive power dispatch problem considering renewable generators. Appl. Soft Comput. 2019, 76, 445–458. [CrossRef]Moradi, M.; Abedini, M.A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [CrossRef]Selim, A.; Kamel, S.; Jurado, F. Efficient optimization technique for multiple DG allocation in distribution networks. Appl. Soft Comput. 2020, 86, 105938. [CrossRef]Jain, N.; Singh, S.; Srivastava, S. PSO based placement of multiple wind DGs and capacitors utilizing probabilistic load flow model. Swarm Evol. Comput. 2014, 19, 15–24. [CrossRef]Leonori, S.; Paschero, M.; Mascioli, F.M.F.; Rizzi, A. Optimization strategies for Microgrid energy management systems by Genetic Algorithms. Appl. Soft Comput. 2020, 86, 105903. [CrossRef]Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018. [CrossRef]Martinez, J.A.; Guerra, G. A Parallel Monte Carlo Method for Optimum Allocation of Distributed Generation. IEEE Trans. Power Syst. 2014, 29, 2926–2933. [CrossRef]Abdelaziz, M.; Moradzadeh, M. Monte-Carlo simulation based multi-objective optimum allocation of renewable distributed generation using OpenCL. Electr. Power Syst. Res. 2019, 170, 81–91. [CrossRef]Do ˘gan¸sahin, K.; Kekezo ˘glu, B.; Yumurtacı, R.; Erdinç, O.; Catalão, J.A.P.S. Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads. Energies 2018, 11, 255. [CrossRef]Rastegar, R. On the Optimal Convergence Probability of Univariate Estimation of Distribution Algorithms. Evol. Comput. 2011, 19, 225–248. [CrossRef] [PubMed]Rousis, A.O.; Konstantelos, I.; Strbac, G. A Planning Model for a Hybrid AC–DC Microgrid Using a Novel GA/AC OPF Algorithm. IEEE Trans. Power Syst. 2020, 35, 227–237. [CrossRef]Ganguly, S.; Samajpati, D. Distributed Generation Allocation on Radial Distribution Networks Under Uncertainties of Load and Generation Using Genetic Algorithm. IEEE Trans. Sustain. Energy 2015, 6, 688–697. [CrossRef]Zaroni, H.; Maciel, L.B.; Carvalho, D.B.; de O. Pamplona, E. Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system. Energy 2019, 172, 498–508. [CrossRef]Hasan, Z.; El-Hawary, M.E. Optimal Power Flow by Black Hole Optimization Algorithm. In Proceedings of the 2014 IEEE Electrical Power and Energy Conference, Calgary, AB, Canada, 12–14 November 2014; pp. 134–141. [CrossRef]Kowsalya, M. Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 2014, 15, 58–65HA, M.P.; Huy, P.D.; Ramachandaramurthy, V.K. A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms. Renew. Sustain. Energy Rev. 2017, 75, 293–312Grisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. In Workshop on Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 214–225.Grisales, L.F.; Grajales, A.; Montoya, O.D.; Hincapié, R.A.; Granada, M. Optimal location and sizing of Distributed Generators using a hybrid methodology and considering different technologies. In Proceedings of the 2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS), Montevideo, Uruguay, 24–27 February 2015; pp. 1–4. [CrossRef]Baluja, S. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning; School of Computer Science, Carnegie Mellon University: Pittsburgh, PA, USA, 1994; pp. 1–41.Xu, Z.; Wang, Y.; Li, S.; Liu, Y.; Todo, Y.; Gao, S. Immune algorithm combined with estimation of distribution for traveling salesman problem. IEEJ Trans. Electr. Electron. Eng. 2016, 11, S142–S154. [CrossRef]Ceberio, J.; Irurozki, E.; Mendiburu, A.; Lozano, J.A. A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog. Artif. Intell. 2012, 1, 103–117. [CrossRef]Larrañaga, P.; Karshenas, H.; Bielza, C.; Santana, R. A review on probabilistic graphical models in evolutionary computation. J. Heuristics 2012, 18, 795–819. [CrossRef]Bolanos, F.; Aedo, J.E.; Rivera, F. Comparison of Learning Rules for Adaptive Population-Based Incremental Learning Algorithms. Available online: http://worldcomp-proceedings.com/proc/p2012/ICA3716.pdf (accessed on 29 October 2020).Rinaldi, P.; Dari, E.; Vénere, M.; Clausse, A. A Lattice-Boltzmann solver for 3D fluid simulation on GPU. Simul. Model. Pract. Theory 2012, 25, 163–171. [CrossRef]Lukaˇc, N.; Žalik, B. GPU-based roofs’ solar potential estimation using LiDAR data. Comput. Geosci. 2013, 52, 34–41. [CrossRef]Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]Daud, S.; Kadir, A.; Gan, C.; Mohamed, A.; Khatib, T. A comparison of heuristic optimization techniques for optimal placement and sizing of photovoltaic based distributed generation in a distribution system. Sol. Energy 2016, 140, 219–226. [CrossRef]Acharya, N.; Mahat, P.; Mithulananthan, N. An analytical approach for DG allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 2006, 28, 669–678. [CrossRef]Ali, E.; Elazim, S.A.; Abdelaziz, A. Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations. Renew. Energy 2017, 101, 1311–1324. [CrossRef]Saha, S.; Mukherjee, V. Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm. IET Gener. Transm. Distrib. 2016, 10, 3671–3680. [CrossRef]Kumawat, M.; Gupta, N.; Jain, N.; Bansal, R. Optimal planning of distributed energy resources in harmonics polluted distribution system. Swarm Evol. Comput. 2018, 39, 99–113. [CrossRef]Grisales, L.F.; Montoya, O.D.; Grajales, A.; Hincapie, R.A.; Granada, M. Optimal Planning and Operation of Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers. IEEE Lat. Am. Trans. 2018, 16, 126–134. [CrossRef]Georgilakis, P.S.; Hatziargyriou, N.D. Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research. IEEE Trans. Power Syst. 2013, 28, 3420–3428. [CrossRef]Bouchekara, H. Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 2014, 24, 879–888. [CrossRef]Velasquez, O.; Giraldo, O.M.; Arevalo, V.G.; Norena, L.G. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32. [CrossRef]Dogan, B.; Olmez, T. Vortex search algorithm for the analog active filter component selection problem. AEU-Int. J. Electron. Commun. 2015, 69, 1243–1253. [CrossRef]Li, Z.; Cao, Y.; Dai, L.V.; Yang, X.; Nguyen, T.T. Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm. Energies 2019, 12, 4310. [CrossRef]Nordman, B.; Christensen, K. DC Local Power Distribution: Technology, Deployment, and Pathways to Success. IEEE Electrif. Mag. 2016, 4, 29–36. [CrossRef]Naik, S.G.; Khatod, D.; Sharma, M. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks.Int. J. Electr. Power Energy Syst. 2013, 53, 967–973. [CrossRef]http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINAL156.pdf156.pdfArtículo principalapplication/pdf539043https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/1/156.pdf97ba422b858da76409e8d664b9d7ef22MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT156.pdf.txt156.pdf.txtExtracted texttext/plain84348https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/4/156.pdf.txt3bb5612687190bac54308c194cbe83d9MD54THUMBNAIL156.pdf.jpg156.pdf.jpgGenerated Thumbnailimage/jpeg86355https://repositorio.utb.edu.co/bitstream/20.500.12585/9996/5/156.pdf.jpg397c232acb22881e29a0a380e85eaa9dMD5520.500.12585/9996oai:repositorio.utb.edu.co:20.500.12585/99962021-02-16 16:05:04.303Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=