Predicting sunspot number from topological features in spectral images I: Machine learning approach

This study presents an advanced machine learning approach to predict the number of sunspots using a comprehensive dataset derived from solar images provided by the Solar and Heliospheric Observatory (SOHO). The dataset encompasses various spectral bands, capturing the complex dynamics of solar activ...

Full description

Autores:
Sierra Porta, David
Tarazona Alvarado, Miguel
Herrera Acevedo, Daniel
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12701
Acceso en línea:
https://hdl.handle.net/20.500.12585/12701
Palabra clave:
Machine learning
Sunspots prediction
Spectral images
Sun’s dynamics
Fractal features
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_068a91cd1c70e0a43ade81bceed5b97e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12701
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Predicting sunspot number from topological features in spectral images I: Machine learning approach
title Predicting sunspot number from topological features in spectral images I: Machine learning approach
spellingShingle Predicting sunspot number from topological features in spectral images I: Machine learning approach
Machine learning
Sunspots prediction
Spectral images
Sun’s dynamics
Fractal features
LEMB
title_short Predicting sunspot number from topological features in spectral images I: Machine learning approach
title_full Predicting sunspot number from topological features in spectral images I: Machine learning approach
title_fullStr Predicting sunspot number from topological features in spectral images I: Machine learning approach
title_full_unstemmed Predicting sunspot number from topological features in spectral images I: Machine learning approach
title_sort Predicting sunspot number from topological features in spectral images I: Machine learning approach
dc.creator.fl_str_mv Sierra Porta, David
Tarazona Alvarado, Miguel
Herrera Acevedo, Daniel
dc.contributor.author.none.fl_str_mv Sierra Porta, David
Tarazona Alvarado, Miguel
Herrera Acevedo, Daniel
dc.subject.keywords.spa.fl_str_mv Machine learning
Sunspots prediction
Spectral images
Sun’s dynamics
Fractal features
topic Machine learning
Sunspots prediction
Spectral images
Sun’s dynamics
Fractal features
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This study presents an advanced machine learning approach to predict the number of sunspots using a comprehensive dataset derived from solar images provided by the Solar and Heliospheric Observatory (SOHO). The dataset encompasses various spectral bands, capturing the complex dynamics of solar activity and facilitating interdisciplinary analyses with other solar phenomena. We employed five machine learning models: Random Forest Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Ada Boost Regressor, and Hist Gradient Boosting Regressor, to predict sunspot numbers. These models utilized four key heliospheric variables — Proton Density, Temperature, Bulk Flow Speed and Interplanetary Magnetic Field (IMF) — alongside 14 newly introduced topological variables. These topological features were extracted from solar images using different filters, including HMIIGR, HMIMAG, EIT171, EIT195, EIT284, and EIT304. In total, 60 models were constructed, both incorporating and excluding the topological variables. Our analysis reveals that models incorporating the topological variables achieved significantly higher accuracy, with the r2-score improving from approximately 0.30 to 0.93 on average. The Extra Trees Regressor (ET) emerged as the best-performing model, demonstrating superior predictive capabilities across all datasets. These results underscore the potential of combining machine learning models with additional topological features from spectral analysis, offering deeper insights into the complex dynamics of solar activity and enhancing the precision of sunspot number predictions. This approach provides a novel methodology for improving space weather forecasting and contributes to a more comprehensive understanding of solar-terrestrial interactions.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-29T16:52:06Z
dc.date.available.none.fl_str_mv 2024-07-29T16:52:06Z
dc.date.issued.none.fl_str_mv 2024-07-19
dc.date.submitted.none.fl_str_mv 2024-07-29
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Sierra-Porta, D., Tarazona-Alvarado, M., & Acevedo, D. H. (2024). Predicting sunspot number from topological features in spectral images I: Machine learning approach. Astronomy and Computing, 100857. https://doi.org/10.1016/j.ascom.2024.100857
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12701
dc.identifier.doi.none.fl_str_mv 10.1016/j.ascom.2024.100857
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Sierra-Porta, D., Tarazona-Alvarado, M., & Acevedo, D. H. (2024). Predicting sunspot number from topological features in spectral images I: Machine learning approach. Astronomy and Computing, 100857. https://doi.org/10.1016/j.ascom.2024.100857
10.1016/j.ascom.2024.100857
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12701
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Astronomy and Computing
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/1/Predicting%20sunspot%20number%20from%20topological%20features%20in%20spectral%20images%20I_%20Machine%20learning%20approach.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/4/Predicting%20sunspot%20number%20from%20topological%20features%20in%20spectral%20images%20I_%20Machine%20learning%20approach.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/5/Predicting%20sunspot%20number%20from%20topological%20features%20in%20spectral%20images%20I_%20Machine%20learning%20approach.pdf.jpg
bitstream.checksum.fl_str_mv 3120f240687c7becff7ed0457468006a
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
80da72ed070bd344239a38e98a7c194a
3c47b691840f43d18fa5694c3cbdcddc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021663087394816
spelling Sierra Porta, David88a81b30-0b54-4821-b432-affefb13412bTarazona Alvarado, Miguelef024c8f-0c62-47e6-90e1-9de2e2566b23Herrera Acevedo, Daniel2f2e14ba-6e9b-4697-a7f7-312414a61c762024-07-29T16:52:06Z2024-07-29T16:52:06Z2024-07-192024-07-29Sierra-Porta, D., Tarazona-Alvarado, M., & Acevedo, D. H. (2024). Predicting sunspot number from topological features in spectral images I: Machine learning approach. Astronomy and Computing, 100857. https://doi.org/10.1016/j.ascom.2024.100857https://hdl.handle.net/20.500.12585/1270110.1016/j.ascom.2024.100857Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis study presents an advanced machine learning approach to predict the number of sunspots using a comprehensive dataset derived from solar images provided by the Solar and Heliospheric Observatory (SOHO). The dataset encompasses various spectral bands, capturing the complex dynamics of solar activity and facilitating interdisciplinary analyses with other solar phenomena. We employed five machine learning models: Random Forest Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Ada Boost Regressor, and Hist Gradient Boosting Regressor, to predict sunspot numbers. These models utilized four key heliospheric variables — Proton Density, Temperature, Bulk Flow Speed and Interplanetary Magnetic Field (IMF) — alongside 14 newly introduced topological variables. These topological features were extracted from solar images using different filters, including HMIIGR, HMIMAG, EIT171, EIT195, EIT284, and EIT304. In total, 60 models were constructed, both incorporating and excluding the topological variables. Our analysis reveals that models incorporating the topological variables achieved significantly higher accuracy, with the r2-score improving from approximately 0.30 to 0.93 on average. The Extra Trees Regressor (ET) emerged as the best-performing model, demonstrating superior predictive capabilities across all datasets. These results underscore the potential of combining machine learning models with additional topological features from spectral analysis, offering deeper insights into the complex dynamics of solar activity and enhancing the precision of sunspot number predictions. This approach provides a novel methodology for improving space weather forecasting and contributes to a more comprehensive understanding of solar-terrestrial interactions.10 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Astronomy and ComputingPredicting sunspot number from topological features in spectral images I: Machine learning approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Machine learningSunspots predictionSpectral imagesSun’s dynamicsFractal featuresLEMBCartagena de IndiasPúblico generalAggarwal, A., Kumar, M., 2021. Image surface texture analysis and classification using deep learning. Multimedia Tools Appl. 80 (1), 1289–1309. doi:10.1007/s11042- 020-09520-2Alexakis, P., Mavromichalaki, H., 2019. Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycles 23 and 24. Astrophys. Space Sci. 364 (11), 187. doi:10.1007/s10509-019-3677-y.Amadasun, M., King, R., 1989. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19 (5), 1264–1274. doi:10.1109/21.44046.Barentine, J.C., 2022. Night sky brightness measurement, quality assessment and monitoring. Nat. Astron. 6 (10), 1120–1132. doi:10.1038/s41550-022-01756-2.Benz, A.O., 2017. Flare observations. Living Rev. Solar Phys. 14, 1–59. doi:10.1007/ s41116-016-0004-3.Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. doi:10.1023/A: 1010933404324.Burt, J., Smith, B., 2012. Deep space climate observatory: The DSCOVR mission. In: 2012 Ieee Aerospace Conference. IEEE, pp. 1–13. doi:10.1109/AERO.2012. 6187025.Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794. doi:10.1145/2939672.2939785Chollet, F., 2021. Deep learning with Python. Simon and Schuster, ISBN: 9781617294433.Cliver, E.W., Pötzi, W., Veronig, A.M., 2022. Large sunspot groups and great magnetic storms: magnetic suppression of CMEs. Astrophys. J. 938 (2), 136. doi:10.3847/ 1538-4357/ac847d.Dang, Y., Chen, Z., Li, H., Shu, H., 2022. A comparative study of non-deep learning, deep learning, and ensemble learning methods for sunspot number prediction. Appl. Artif. Intell. 36 (1), 2074129. doi:10.1080/08839514.2022.2074129.Dani, T., Sulistiani, S., 2019. Prediction of maximum amplitude of solar cycle 25 using machine learning. In: J. Phys. Conf. Series. 1231, (1), IOP Publishing, 012022. doi:10.1088/1742-6596/1231/1/012022.De Alwis, T.P., Samadi, S.Y., 2024. Stacking-based neural network for nonlinear time series analysis. Stat. Methods Appl. 1–24. doi:10.1007/s10260-024-00746-0.Delaboudiniere, J.-P., Artzner, G., Brunaud, J., Gabriel, A.H., Hochedez, J.-F., Millier, F., Song, X., Au, B., Dere, K., Howard, R.A., et al., 1995. EIT: extreme-ultraviolet imaging telescope for the SOHO mission. SOHO Mission 291–312. doi:10.1007/ 978-94-009-0191-9_8Drews, A., Huo, W., Matthes, K., Kodera, K., Kruschke, T., 2022. The sun’s role in decadal climate predictability in the north atlantic. Atmos. Chem. Phys. 22 (12), 7893–7904. doi:10.5194/acp-22-7893-2022Floyd, L., Tobiska, W.K., Cebula, R.P., 2002. Solar UV irradiance, its variation, and its relevance to the earth. Adv. Space Res. 29 (10), 1427–1440. doi:10.1016/S0273- 1177(02)00202-8.Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1), 119–139. doi:10.1006/ jcss.1997.1504.Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Statist. 1189–1232, https://www.jstor.org/stable/2699986.Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn. 63, 3–42. doi:10.1007/s10994-006-6226-1.Gour, P.S., Singh, N.P., Soni, S., Saini, S.M., 2021. Observation of coronal mass ejections in association with sun spot number and solar flares. In: IOP Conference Series: Materials Science and Engineering, Vol. 1120, No. 1. IOP Publishing, 012020. doi:10.1088/1757-899X/1120/1/012020.Grauer, A.D., Grauer, P.A., 2021. Linking solar minimum, space weather, and night sky brightness. Sci. Rep. 11 (1), 23893. doi:10.1038/s41598-021-02365-1.Guha, R., Velegol, D., 2023. Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties. J. Cheminformat. 15 (1), 54. doi:10.1186/s13321-023-00712-0.Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R.R., Cheng, M.-M., Hu, S.-M., 2022. Attention mechanisms in computer vision: A survey. Comput. Visual Media 8 (3), 331–368. doi:10.1007/s41095-022- 0271-y.He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. doi:10.1109/IEEESTD.1997.85951.Hill, M., Allen, R., Kollmann, P., Brown, L., Decker, R., McNutt, R., Krimigis, S., Andrews, G., Bagenal, F., Clark, G., et al., 2020. Influence of solar disturbances on galactic cosmic rays in the solar wind, heliosheath, and local interstellar medium: Advanced composition explorer, new horizons, and voyager observations. Astrophys. J. 905 (1), 69. doi:10.3847/1538-4357/abb408.Keller, K., 2019. Entropy measures for data analysis: Theory, algorithms and applications. Entropy 21 (10), 935. doi:10.3390/e23111496Khan, T., Arafat, F., Mojumdar, M.U., Rajbongshi, A., Siddiquee, S.M.T., Chakraborty, N.R., 2020. A machine learning approach for predicting the sunspot of solar cycle. In: 2020 11th International Conference on Computing, Communication and Networking Technologies. ICCCNT, IEEE, pp. 1–4. doi:10.1109/ICCCNT49239.2020.9225427.Kohl, J.L., Esser, R., Gardner, L.D., Habbal, S., Daigneau, P.S., Dennis, E., Nystrom, G., Panasyuk, A., Raymond, J., Smith, P., et al., 1995. The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. SOHO Mission 313–356. doi:10.1007/978-94-009-0191-9_9.Kozak, J., Juszczuk, P., 2023. Entropy in Real-World Datasets and Its Impact on Machine Learning. MDPI-Multidisciplinary Digital Publishing Institute, doi:10.3390/ books978-3-0365-7849-1Le Mouël, J.-L., Lopes, F., Courtillot, V., 2019. A solar signature in many climate indices. J. Geophys. Res.: Atmos. 124 (5), 2600–2619. doi:10.1029/2018JD028939.Li, Q., Wan, M., Zeng, S.-G., Zheng, S., Deng, L.-H., 2021. Predicting the 25th solar cycle using deep learning methods based on sunspot area data. Res. Astron. Astrophys. 21 (7), 184. doi:10.1088/1674-4527/21/7/184Mahdi, M.M., Tipu, M.A.N., Halder, C., Rahman, K.F., 2019. Comparative analysis of prediction of coronal mass ejections (CME) based on sunspot activities using various machine learning models. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques. ICREST, IEEE, pp. 588–591. doi: 10.1109/ICREST.2019.8644272.Marshak, A., Herman, J., Adam, S., Karin, B., Carn, S., Cede, A., Geogdzhayev, I., Huang, D., Huang, L.-K., Knyazikhin, Y., et al., 2018. Earth observations from DSCOVR EPIC instrument. Bull. Am. Meteorol. Soc. 99 (9), 1829–1850. doi:10. 1175/BAMS-D-17-0223.1Nandy, D., 2021. Progress in solar cycle predictions: Sunspot cycles 24–25 in perspective: Invited review. Sol. Phys. 296 (3), 54. doi:10.1007/s11207-021-01797- 2.National Research Council and Division on Engineering and Physical Sciences and Aeronautics and Space Engineering Board and Space Studies Board and Committee on a Decadal Strategy for Solar and Space Physics (Heliophysics), 2013. Solar and space physics: A science for a technological society. National Academies Press, doi:10.17226/13060National Research Council and Division on Engineering and Physical Sciences and Space Studies Board and Committee on the Societal and Economic Impacts of Severe Space Weather Events and A Workshop, 2009. Severe space weather events: Understanding societal and economic impacts: A workshop report. National Academies Press, doi:10.17226/12507.Pala, Z., Atici, R., 2019. Forecasting sunspot time series using deep learning methods. Sol. Phys. 294 (5), 50. doi:10.1007/s11207-019-1434-6.Prasad, A., Roy, S., Sarkar, A., Panja, S.C., Patra, S.N., 2023. An improved prediction of solar cycle 25 using deep learning based neural network. Sol. Phys. 298 (3), 50. doi:10.1007/s11207-023-02129-2.Ramezan, C.A., Warner, T.A., Maxwell, A.E., 2019. Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification. Remote Sens. 11 (2), 185. doi:10.3390/rs11020185Salem, Y.B., Abdelkrim, M.N., 2020. Texture classification of fabric defects using machine learning. Int. J. Electr. Comput. Eng. 10 (4), 4390. doi:10.11591/ijece. v10i4.pp4390-4399.Saroughi, M., Mirzania, E., Achite, M., Katipoğlu, O.M., Ehteram, M., 2024. Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran). Environ. Monit. Assess. 196 (3), 1–20. doi:10.1007/s10661-024-12357-z.Schaffer, C., 1993. Selecting a classification method by cross-validation. Mach. Learn. 13, 135–143. doi:10.1007/BF00993106Scherrer, P.H., Schou, J., Bush, R., Kosovichev, A., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., Zhao, J., Title, A., et al., 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol. Phys. 275, 207–227. doi:10.1007/s11207-011-9834-2Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., et al., 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys. 275, 229–259. doi:10.1007/s11207-011- 9842-2.Sierra Porta, D., Tarazona-Alvarado, M., 2023. Dataset: Sun dynamics from topological features extraction. Mendeley Data, V1, doi:10.17632/5gh3xbvc92.1.Singh, A., Bhargawa, A., 2020. Ascendancy of solar variability on terrestrial climate: A review. J. Basic Appl. Sci 16, 105–130. doi:10.29169/1927-5129.2020.16.14.Solomon, S.C., Liu, H.-L., Marsh, D.R., McInerney, J.M., Qian, L., Vitt, F.M., 2019. Whole atmosphere climate change: Dependence on solar activity. J. Geophys. Res. Space Phys. 124 (5), 3799–3809. doi:10.1029/2019JA026678.Spencer, D.A., Johnson, L., Long, A.C., 2019. Solar sailing technology challenges. Aerosp. Sci. Technol. 93, 105276. doi:10.1016/j.ast.2019.07.009.Stone, E.C., Frandsen, A., Mewaldt, R., Christian, E., Margolies, D., Ormes, J., Snow, F., 1998. The advanced composition explorer. Space Sci. Rev. 86, 1–22. doi:10.1023/A: 1005082526237.Tamura, H., Mori, S., Yamawaki, T., 1978. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8 (6), 460–473. doi:10.1109/TSMC.1978. 4309999Tarazona-Alvarado, M., Sierra-Porta, D., 2023. Dataset for sun dynamics from topological features. Data Brief 51, 109728. doi:10.1016/j.dib.2023.109728.Tlatov, A.G., 2022. The shape of sunspots and solar activity cycles. Sol. Phys. 297 (8), 110. doi:10.1007/s11207-022-02045-x.Tougui, I., Jilbab, A., El Mhamdi, J., 2021. Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications. Healthc. Informat. Res. 27 (3), 189–199. doi:10.4258/hir.2021.27.3.189.Tsiropoula, G., 2003. Signatures of solar activity variability in meteorological parameters. J. Atmospheric Solar-Terrestrial Phys. 65 (4), 469–482. doi:10.1016/S1364- 6826(02)00295-X.Wang, J., Wiens, J., Lundberg, S., 2021. Shapley flow: A graphbased approach to interpreting model predictions. In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 721– 729, https://ui.adsabs.harvard.edu/link_gateway/2020arXiv201014592W/ doi:10.48550/arXiv.2010.14592.Weerts, H.J., Mueller, A.C., Vanschoren, J., 2020. Importance of tuning hyperparameters of machine learning algorithms. doi:10.48550/arXiv.2007.07588, arXiv preprint arXiv:2007.07588.Wilson, III, L.B., Brosius, A.L., Gopalswamy, N., Nieves-Chinchilla, T., Szabo, A., Hurley, K., Phan, T., Kasper, J.C., Lugaz, N., Richardson, I.G., et al., 2021. A quarter century of wind spacecraft discoveries. Rev. Geophys. doi:10.1029/2020RG000714.Wu, C.-M., Chen, Y.-C., 1992. Statistical feature matrix for texture analysis. CVGIP, Graph. Models Image Process. 54 (5), 407–419. doi:10.1016/1049-9652(92)90025- S.Xiao, Z., 2021. A review of machine learning methods applied in sunspot prediction. In: 2021 International Conference on Networking, Communications and Information Technology. NetCIT, IEEE, pp. 158–161. doi:10.1109/NetCIT54147.2021.00039Yang, L., Shami, A., 2020. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316. doi:10.1016/j. neucom.2020.07.061Zhang, J., Temmer, M., Gopalswamy, N., Malandraki, O., Nitta, N.V., Patsourakos, S., Shen, F., Vršnak, B., Wang, Y., Webb, D., et al., 2021. Earth-affecting solar transients: A review of progresses in solar cycle 24. Progr. Earth Planetary Sci. 8, 1–102. doi:10.1186/s40645-021-00426-7.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPredicting sunspot number from topological features in spectral images I_ Machine learning approach.pdfPredicting sunspot number from topological features in spectral images I_ Machine learning approach.pdfArtículo principalapplication/pdf2598683https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/1/Predicting%20sunspot%20number%20from%20topological%20features%20in%20spectral%20images%20I_%20Machine%20learning%20approach.pdf3120f240687c7becff7ed0457468006aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPredicting sunspot number from topological features in spectral images I_ Machine learning approach.pdf.txtPredicting sunspot number from topological features in spectral images I_ Machine learning approach.pdf.txtExtracted texttext/plain66293https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/4/Predicting%20sunspot%20number%20from%20topological%20features%20in%20spectral%20images%20I_%20Machine%20learning%20approach.pdf.txt80da72ed070bd344239a38e98a7c194aMD54THUMBNAILPredicting sunspot number from topological features in spectral images I_ Machine learning approach.pdf.jpgPredicting sunspot number from topological features in spectral images I_ Machine learning approach.pdf.jpgGenerated Thumbnailimage/jpeg8300https://repositorio.utb.edu.co/bitstream/20.500.12585/12701/5/Predicting%20sunspot%20number%20from%20topological%20features%20in%20spectral%20images%20I_%20Machine%20learning%20approach.pdf.jpg3c47b691840f43d18fa5694c3cbdcddcMD5520.500.12585/12701oai:repositorio.utb.edu.co:20.500.12585/127012024-07-30 00:15:17.132Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=