High impedance fault modeling and location for transmission line✰

A fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to est...

Full description

Autores:
Doria-García, Jose
Orozco-Henao, Cesar
Leborgne, Roberto
Montoya, Oscar Danilo
Gil-González, Walter
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12245
Acceso en línea:
https://hdl.handle.net/20.500.12585/12245
Palabra clave:
Fault Detection;
Electric Impedance;
Electric Fault Location
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_0658dd8bb8d35f2f05010f2386a77445
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12245
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv High impedance fault modeling and location for transmission line✰
title High impedance fault modeling and location for transmission line✰
spellingShingle High impedance fault modeling and location for transmission line✰
Fault Detection;
Electric Impedance;
Electric Fault Location
LEMB
title_short High impedance fault modeling and location for transmission line✰
title_full High impedance fault modeling and location for transmission line✰
title_fullStr High impedance fault modeling and location for transmission line✰
title_full_unstemmed High impedance fault modeling and location for transmission line✰
title_sort High impedance fault modeling and location for transmission line✰
dc.creator.fl_str_mv Doria-García, Jose
Orozco-Henao, Cesar
Leborgne, Roberto
Montoya, Oscar Danilo
Gil-González, Walter
dc.contributor.author.none.fl_str_mv Doria-García, Jose
Orozco-Henao, Cesar
Leborgne, Roberto
Montoya, Oscar Danilo
Gil-González, Walter
dc.subject.keywords.spa.fl_str_mv Fault Detection;
Electric Impedance;
Electric Fault Location
topic Fault Detection;
Electric Impedance;
Electric Fault Location
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description A fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to estimate the fault location in transmission lines. The mathematical formulation considers the distributed parameters transmission line model for the estimation of the fault distance, and it is obtained by the application of Gauss-Newton method. Said method considers available voltage and current measurements at both terminals of the transmission line as well as the line parameters. Moreover, the method can be used for locating high and low impedance faults. Additionally, it is proposed an adjustable HIF model to validate its performance, which allows to generate synthetic high impedance faults by setting specific features of a HIF from simple input parameters. The error in fault location accuracy is under 0.1% for more than 90% of the performance test cases. The easy implementation of this method and encouraging test results indicate its potential for real-life applications. © 2021
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:29:20Z
dc.date.available.none.fl_str_mv 2023-07-19T21:29:20Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Doria-García, J., Orozco-Henao, C., Leborgne, R., Montoya, O. D., & Gil-González, W. (2021). High impedance fault modeling and location for transmission line✰. Electric Power Systems Research, 196, 107202.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12245
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2021.107202
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Doria-García, J., Orozco-Henao, C., Leborgne, R., Montoya, O. D., & Gil-González, W. (2021). High impedance fault modeling and location for transmission line✰. Electric Power Systems Research, 196, 107202.
10.1016/j.epsr.2021.107202
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12245
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electric Power Systems Research
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/1/21IPST022.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/3/21IPST022.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/4/21IPST022.pdf.jpg
bitstream.checksum.fl_str_mv 1d786623589dbb2e77b3b7828dadc33d
e20ad307a1c5f3f25af9304a7a7c86b6
79a320ba2295a661a477b9f780d4a58f
9b753988bc1eb851884ca64c7ce9e1e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021646440202240
spelling Doria-García, Josed10231dd-7426-487f-accd-aa5f3cc37d15Orozco-Henao, Cesarb7606b9b-c12f-48d3-a4a0-23903e7dcfe6Leborgne, Robertoc6b916fc-48b2-4b8d-b8c9-6f9d0bf88bfcMontoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter72191491-1c75-451d-a5c5-f7f45373ecd02023-07-19T21:29:20Z2023-07-19T21:29:20Z20212023Doria-García, J., Orozco-Henao, C., Leborgne, R., Montoya, O. D., & Gil-González, W. (2021). High impedance fault modeling and location for transmission line✰. Electric Power Systems Research, 196, 107202.https://hdl.handle.net/20.500.12585/1224510.1016/j.epsr.2021.107202Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to estimate the fault location in transmission lines. The mathematical formulation considers the distributed parameters transmission line model for the estimation of the fault distance, and it is obtained by the application of Gauss-Newton method. Said method considers available voltage and current measurements at both terminals of the transmission line as well as the line parameters. Moreover, the method can be used for locating high and low impedance faults. Additionally, it is proposed an adjustable HIF model to validate its performance, which allows to generate synthetic high impedance faults by setting specific features of a HIF from simple input parameters. The error in fault location accuracy is under 0.1% for more than 90% of the performance test cases. The easy implementation of this method and encouraging test results indicate its potential for real-life applications. © 2021application/pdfengElectric Power Systems ResearchHigh impedance fault modeling and location for transmission line✰info:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Fault Detection;Electric Impedance;Electric Fault LocationLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasPC37.250/D1.30, Nov 2019 - PC37.250/D1.30, Nov 2019 - IEEE Approved Draft Guide for Engineering, Implementation, and Management of System Integrity Protection Schemes - IEEE Standard n.d. (accessed October 29, 2020). https://ieeexplore.ieee.org/document/9031811Anderson, P. Analysis of Faulted Power Systems (1995) . Cited 576 times. Institute of Electrical and Electronics, Inc IowaDaqing, H. Detection of high-impedance faults in power distribution systems (2007) 2007 Power Systems Conference: Advance Metering, Protection, Control, Communication, and Distributed Resources, PSC 2007, art. no. 4740902, pp. 85-95. Cited 30 times. ISBN: 978-142440855-9 doi: 10.1109/PSAMP.2007.4740902Ramamurthy, T.A., Swarup, K.S. High Impedance Fault detection using DWT for transmission and distribution networks (2016) 2016 IEEE 6th International Conference on Power Systems, ICPS 2016, art. no. 7584004. Cited 6 times. ISBN: 978-150900128-6 doi: 10.1109/ICPES.2016.7584004Emanuel, A.E., Cyganski, D., Orr, J.A., Shiller, S., Gulachenski, E.M. High impedance fault arcing on sandy soil in 15kV distribution feeders: Contributions to the evaluation of the low frequency spectrum (1990) IEEE Transactions on Power Delivery, 5 (2), pp. 676-686. Cited 220 times. doi: 10.1109/61.53070Jerrings, D.I., Linders, J.R. Ground resistance-revisited (1989) IEEE Power Engineering Review, 9 (4), p. 54. Cited 3 times. doi: 10.1109/MPER.1989.4310592Aucoin, M. Status of high impedance fault detection (1985) IEEE Transactions on Power Apparatus and Systems, PAS-104 (3), pp. 637-644. Cited 13 times. doi: 10.1109/TPAS.1985.318999Jannati, M., Eslami, L. Precise modeling of high impedance faults in power distribution system in EMTPWorks software (2013) Journal of Electrical Engineering, 13 (2), pp. 283-290. Cited 4 times.Nam, S.R., Park, J.K., Kang, Y.C., Kim, T.H. A modeling method of a high impedance fault in a distribution system using two series time-varying resistances in EMTP (2001) Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2 (SUMMER), pp. 1175-1180. Cited 97 times. doi: 10.1109/pess.2001.970231Dos Santos, W.C., De Souza, B.A., Dantas Brito, N.S., Costa, F.B., Cerqueira Paes Jr., M.R. High impedance faults: From field tests to modeling (2013) Journal of Control, Automation and Electrical Systems, 24 (6), pp. 885-896. Cited 45 times. doi: 10.1007/s40313-013-0072-8de Aguiar, R.A., Dalcastagnê, A.L., Zürn, H.H., Seara, R. Impedance-based fault location methods: Sensitivity analysis and performance improvement (2018) Electric Power Systems Research, 155, pp. 236-245. Cited 27 times. doi: 10.1016/j.epsr.2017.10.021Akmaz, D., Mamiş, M.S., Arkan, M., Tağluk, M.E. Transmission line fault location using traveling wave frequencies and extreme learning machine (2018) Electric Power Systems Research, 155, pp. 1-7. Cited 62 times. doi: 10.1016/j.epsr.2017.09.019Di Santo, S.G., Pereira, C.E.D.M. Fault location method applied to transmission lines of general configuration (Open Access) (2015) International Journal of Electrical Power and Energy Systems, 69, pp. 287-294. Cited 16 times. doi: 10.1016/j.ijepes.2015.01.014Doria-Garcia, J., Orozco-Henao, C., Iurinic, L.U., Pulgarín-Rivera, J.D. High impedance fault location: Generalized extension for ground faults (2020) International Journal of Electrical Power and Energy Systems, 114, art. no. 105387. Cited 8 times. doi: 10.1016/j.ijepes.2019.105387Livani, H., Evrenosoglu, C.Y. A machine learning and wavelet-based fault location method for hybrid transmission lines (2014) IEEE Transactions on Smart Grid, 5 (1), art. no. 6558520, pp. 51-59. Cited 207 times. doi: 10.1109/TSG.2013.2260421Chen, M.-Y., Zhai, J.-Q., Lang, Z.-Q., Liao, J.-C., Fan, Z.-Y. High impedance fault location in transmission line using nonlinear frequency analysis (2010) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6328 LNCS (PART 1), pp. 104-111. Cited 5 times. ISBN: 3642156207; 978-364215620-5 doi: 10.1007/978-3-642-15621-2_13Iurinic, L.U., Herrera-Orozco, A.R., Ferraz, R.G., Bretas, A.S. Distribution Systems High-Impedance Fault Location: A Parameter Estimation Approach (2016) IEEE Transactions on Power Delivery, 31 (4), art. no. 7355370, pp. 1806-1814. Cited 77 times. doi: 10.1109/TPWRD.2015.2507541Ghazizadeh-Ahsaee, M. Accurate NHIF locator utilizing two-end unsynchronized measurements (2013) IEEE Transactions on Power Delivery, 28 (1), art. no. 6389794, pp. 419-426. Cited 12 times. doi: 10.1109/TPWRD.2012.2215889Lee, C.J., Park, J.B., Shin, J.R., Radojevié, Z.M. A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition (2006) IEEE Transactions on Power Systems, 21 (3), pp. 1460-1462. Cited 62 times. doi: 10.1109/TPWRS.2006.876646Ferraz, R.G., Iurinic, L.U., Filomena, A.D., Gazzana, D.S., Bretas, A.S. Arc fault location: A nonlinear time varying fault model and frequency domain parameter estimation approach (2016) International Journal of Electrical Power and Energy Systems, 80, pp. 347-355. Cited 26 times. doi: 10.1016/j.ijepes.2016.02.003Gratton, S., Lawless, A.S., Nichols, N.K. Approximate Gauss-newton methods for nonlinear least squares problems (2007) SIAM Journal on Optimization, 18 (1), pp. 106-132. Cited 133 times. doi: 10.1137/050624935http://purl.org/coar/resource_type/c_6501ORIGINAL21IPST022.pdf21IPST022.pdfapplication/pdf1221059https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/1/21IPST022.pdf1d786623589dbb2e77b3b7828dadc33dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT21IPST022.pdf.txt21IPST022.pdf.txtExtracted texttext/plain39495https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/3/21IPST022.pdf.txt79a320ba2295a661a477b9f780d4a58fMD53THUMBNAIL21IPST022.pdf.jpg21IPST022.pdf.jpgGenerated Thumbnailimage/jpeg10737https://repositorio.utb.edu.co/bitstream/20.500.12585/12245/4/21IPST022.pdf.jpg9b753988bc1eb851884ca64c7ce9e1e4MD5420.500.12585/12245oai:repositorio.utb.edu.co:20.500.12585/122452023-07-20 00:17:42.895Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=