Presidential preferences in Colombia through Sentiment Analysis

This work carries out the sentiment analysis of the social network Twitter regarding the presidential debate on May 23, where a hashtag was left open so viewers could give their points of view on these three candidates: Gustavo Petro, Federico Gutierrez, and Rodolfo Hernández. Once we extracted thes...

Full description

Autores:
Puertas, Edwin
Martinez-Santos, Juan Carlos
Pertuz-Duran, Pablo Andres
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12314
Acceso en línea:
https://hdl.handle.net/20.500.12585/12314
Palabra clave:
Language model
Natural language processing
Presidential debate
Sentimental analysis
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_05ff6fbaa1c9bd94f8a4dd8ddf12fd34
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12314
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Presidential preferences in Colombia through Sentiment Analysis
title Presidential preferences in Colombia through Sentiment Analysis
spellingShingle Presidential preferences in Colombia through Sentiment Analysis
Language model
Natural language processing
Presidential debate
Sentimental analysis
title_short Presidential preferences in Colombia through Sentiment Analysis
title_full Presidential preferences in Colombia through Sentiment Analysis
title_fullStr Presidential preferences in Colombia through Sentiment Analysis
title_full_unstemmed Presidential preferences in Colombia through Sentiment Analysis
title_sort Presidential preferences in Colombia through Sentiment Analysis
dc.creator.fl_str_mv Puertas, Edwin
Martinez-Santos, Juan Carlos
Pertuz-Duran, Pablo Andres
dc.contributor.author.none.fl_str_mv Puertas, Edwin
Martinez-Santos, Juan Carlos
Pertuz-Duran, Pablo Andres
dc.subject.keywords.spa.fl_str_mv Language model
Natural language processing
Presidential debate
Sentimental analysis
topic Language model
Natural language processing
Presidential debate
Sentimental analysis
description This work carries out the sentiment analysis of the social network Twitter regarding the presidential debate on May 23, where a hashtag was left open so viewers could give their points of view on these three candidates: Gustavo Petro, Federico Gutierrez, and Rodolfo Hernández. Once we extracted these Tweets contained in the hashtag, they were manually classified. They then went through all the pre-processing and elimination of special characters, links, URLs, images, or videos. Next, the TextVectorization layer from the TensorFlow library was used to convert these tweets to vectors and finally to go through the two models. The results show the best results for the BERT model with an accuracy of 76% and an F1 score of 85%.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:19:15Z
dc.date.available.none.fl_str_mv 2023-07-21T16:19:15Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Puertas, E., Martinez-Santos, J.C., Andres Pertuz-Duran, P. Presidential preferences in Colombia through Sentiment Analysis (2022) 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022, . DOI: 10.1109/ANDESCON56260.2022.9989700
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12314
dc.identifier.doi.none.fl_str_mv 10.1109/ANDESCON56260.2022.9989700
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Puertas, E., Martinez-Santos, J.C., Andres Pertuz-Duran, P. Presidential preferences in Colombia through Sentiment Analysis (2022) 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022, . DOI: 10.1109/ANDESCON56260.2022.9989700
10.1109/ANDESCON56260.2022.9989700
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12314
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/1/Presidential%20preferences%20in%20Colombia%20through%20Sentiment%20Analysis.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/4/Presidential%20preferences%20in%20Colombia%20through%20Sentiment%20Analysis.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/5/Presidential%20preferences%20in%20Colombia%20through%20Sentiment%20Analysis.pdf.jpg
bitstream.checksum.fl_str_mv 4126ecd18c5d0bd4cebf4cab48cde573
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
4c2114b2341723ea05612168ac2758e1
a84254b5db51829b9fe94b355c34c2de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021666315960320
spelling Puertas, Edwin5a1b1566-e112-43dc-8ac7-310ea9af8f05Martinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe77318Pertuz-Duran, Pablo Andres5663e899-784c-4a77-97c0-600d946774cf2023-07-21T16:19:15Z2023-07-21T16:19:15Z20222023-07Puertas, E., Martinez-Santos, J.C., Andres Pertuz-Duran, P. Presidential preferences in Colombia through Sentiment Analysis (2022) 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022, . DOI: 10.1109/ANDESCON56260.2022.9989700https://hdl.handle.net/20.500.12585/1231410.1109/ANDESCON56260.2022.9989700Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis work carries out the sentiment analysis of the social network Twitter regarding the presidential debate on May 23, where a hashtag was left open so viewers could give their points of view on these three candidates: Gustavo Petro, Federico Gutierrez, and Rodolfo Hernández. Once we extracted these Tweets contained in the hashtag, they were manually classified. They then went through all the pre-processing and elimination of special characters, links, URLs, images, or videos. Next, the TextVectorization layer from the TensorFlow library was used to convert these tweets to vectors and finally to go through the two models. The results show the best results for the BERT model with an accuracy of 76% and an F1 score of 85%.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf22022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022Presidential preferences in Colombia through Sentiment Analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Language modelNatural language processingPresidential debateSentimental analysisCartagena de IndiasAlva-Segura, D.A. (2021) Análisis Del Sentimiento Político en Twitter Durante Las Elecciones Congresales 2020 en El Perú Master's thesisCuervo, M.C., Guerrero, M.A.V. Predicción electoral usando un modelo híbrido basado en análisis sentimental: Elecciones presidenciales de Colombia (2019) Revista Politécnica, 15 (30), pp. 94-104.Andriot, J., Park, B., Francia, P., Gudivada, V.N. Sentiment analysis of democratic presidential primaries debate tweets using machine learning models (2020) Advances in Intelligent Systems and Computing, 1155, pp. 339-349. http://www.springer.com/series/11156 ISBN: 978-981154028-8 doi: 10.1007/978-981-15-4029-5_34Boiy, E., Hens, P., Deschacht, K., Moens, M.-F. Automatic sentiment analysis in on-line text (2007) Openness in Digital Publishing: Awareness, Discovery and Access - Proceedings of the 11th International Conference on Electronic Publishing, ELPUB 2007, pp. 349-360. Cited 144 times. ISBN: 978-385437292-9Naiknaware, B.R., Kawathekar, S.S. Prediction of 2019 Indian Election using sentiment analysis (2019) Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018, art. no. 8653602, pp. 660-665. Cited 8 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8651203 ISBN: 978-153861442-6 doi: 10.1109/I-SMAC.2018.8653602Abdullah, M., Hadzikadic, M. (2017) Sentiment Analysis of Twitter Data: Emotions Revealed Regarding Donald Trump during the 2015-16 Primary Debates., pp. 760-764.Puertas, E., Moreno-Sandoval, L.G., Redondo, J., Alvarado-Valencia, J.A., Pomares-Quimbaya, A. Detection of Sociolinguistic Features in Digital Social Networks for the Detection of Communities (2021) Cognitive Computation, 13 (2), pp. 518-537. Cited 4 times. http://www.springer.com/biomed/neuroscience/journal/12559 doi: 10.1007/s12559-021-09818-9Moreno-Sandoval, L.G., Del Castillo, E.A.P., Quimbaya, A.P., Alvarado-Valencia, J.A. Assembly of polarity, emotion and user statistics for detection of fake profiles (2020) CLEF (Working Notes). Cited 3 times.Puertas, E., Martinez-Santos, J.C. (2021) Phonetic Detection for Hate Speech Spreaders on Twitter. Cited 3 times.Smagulova, K., James, A.P. A survey on LSTM memristive neural network architectures and applications (2019) European Physical Journal: Special Topics, 228 (10), pp. 2313-2324. Cited 126 times. http://www.springer.com/west/home?SGWID=4-102-70-173670503-0&changeHeader=true doi: 10.1140/epjst/e2019-900046-xChicco, D., Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation (Open Access) (2020) BMC Genomics, 21 (1), art. no. 6. Cited 1810 times. http://www.biomedcentral.com/bmcgenomics doi: 10.1186/s12864-019-6413-7Zou, Q., Xie, S., Lin, Z., Wu, M., Ju, Y. Finding the Best Classification Threshold in Imbalanced Classification (Open Access) (2016) Big Data Research, 5, pp. 2-8. Cited 131 times. https://www.journals.elsevier.com/big-data-research doi: 10.1016/j.bdr.2015.12.001http://purl.org/coar/resource_type/c_6501ORIGINALPresidential preferences in Colombia through Sentiment Analysis.pdfPresidential preferences in Colombia through Sentiment Analysis.pdfapplication/pdf113409https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/1/Presidential%20preferences%20in%20Colombia%20through%20Sentiment%20Analysis.pdf4126ecd18c5d0bd4cebf4cab48cde573MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPresidential preferences in Colombia through Sentiment Analysis.pdf.txtPresidential preferences in Colombia through Sentiment Analysis.pdf.txtExtracted texttext/plain3500https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/4/Presidential%20preferences%20in%20Colombia%20through%20Sentiment%20Analysis.pdf.txt4c2114b2341723ea05612168ac2758e1MD54THUMBNAILPresidential preferences in Colombia through Sentiment Analysis.pdf.jpgPresidential preferences in Colombia through Sentiment Analysis.pdf.jpgGenerated Thumbnailimage/jpeg7786https://repositorio.utb.edu.co/bitstream/20.500.12585/12314/5/Presidential%20preferences%20in%20Colombia%20through%20Sentiment%20Analysis.pdf.jpga84254b5db51829b9fe94b355c34c2deMD5520.500.12585/12314oai:repositorio.utb.edu.co:20.500.12585/123142023-07-22 00:18:18.238Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=