Thermoeconomic analysis of pvc production plant reactors cooling system
In this work the results of the research made to PVC production plant reactors cooling system are included. The heat generated in the reactor must be removed to maintain its temperature at an optimal range between 50 and 70 °C. To assess the cooling system exergetic and Thermoeconomic indicators wer...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8957
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8957
- Palabra clave:
- Cooling systems
Engineering research
Evaporative cooling systems
Exergy
Steam condensers
Thermoelectric equipment
Evaporative condenser
Exergetic efficiency
Exergoeconomic
Heat exchange
Production plant
Relative costs
Thermo-economic
Thermoeconomic analysis
Cooling
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_05508e07602356348f05281615a24525 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8957 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Thermoeconomic analysis of pvc production plant reactors cooling system |
title |
Thermoeconomic analysis of pvc production plant reactors cooling system |
spellingShingle |
Thermoeconomic analysis of pvc production plant reactors cooling system Cooling systems Engineering research Evaporative cooling systems Exergy Steam condensers Thermoelectric equipment Evaporative condenser Exergetic efficiency Exergoeconomic Heat exchange Production plant Relative costs Thermo-economic Thermoeconomic analysis Cooling |
title_short |
Thermoeconomic analysis of pvc production plant reactors cooling system |
title_full |
Thermoeconomic analysis of pvc production plant reactors cooling system |
title_fullStr |
Thermoeconomic analysis of pvc production plant reactors cooling system |
title_full_unstemmed |
Thermoeconomic analysis of pvc production plant reactors cooling system |
title_sort |
Thermoeconomic analysis of pvc production plant reactors cooling system |
dc.subject.keywords.none.fl_str_mv |
Cooling systems Engineering research Evaporative cooling systems Exergy Steam condensers Thermoelectric equipment Evaporative condenser Exergetic efficiency Exergoeconomic Heat exchange Production plant Relative costs Thermo-economic Thermoeconomic analysis Cooling |
topic |
Cooling systems Engineering research Evaporative cooling systems Exergy Steam condensers Thermoelectric equipment Evaporative condenser Exergetic efficiency Exergoeconomic Heat exchange Production plant Relative costs Thermo-economic Thermoeconomic analysis Cooling |
description |
In this work the results of the research made to PVC production plant reactors cooling system are included. The heat generated in the reactor must be removed to maintain its temperature at an optimal range between 50 and 70 °C. To assess the cooling system exergetic and Thermoeconomic indicators were used and it was observed that: (i) The greatest exergetic efficiencies arise in compressors. (ii) The greatest destruction of exergy and reasons of destruction of exergy cost and lower exergoeconomic factors are presented in the evaporative condenser. (iii) The heat exchange equipment has highest relative cost differences. © 2018 ASME. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:39Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:39Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6 |
dc.identifier.isbn.none.fl_str_mv |
9780791858417 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8957 |
dc.identifier.doi.none.fl_str_mv |
10.1115/IMECE2017-70171 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56581610900 56581727500 57200341087 57190756815 |
identifier_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6 9780791858417 10.1115/IMECE2017-70171 Universidad Tecnológica de Bolívar Repositorio UTB 56581610900 56581727500 57200341087 57190756815 |
url |
https://hdl.handle.net/20.500.12585/8957 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
3 November 2017 through 9 November 2017 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
publisher.none.fl_str_mv |
American Society of Mechanical Engineers (ASME) |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040943283&doi=10.1115%2fIMECE2017-70171&partnerID=40&md5=8e56f2cea88af2b0df42cacb88996e67 Scopus2-s2.0-85040943283 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/1/MiniProdInv.png https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/2/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021591623794688 |
spelling |
2020-03-26T16:32:39Z2020-03-26T16:32:39Z2017ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 69780791858417https://hdl.handle.net/20.500.12585/895710.1115/IMECE2017-70171Universidad Tecnológica de BolívarRepositorio UTB56581610900565817275005720034108757190756815In this work the results of the research made to PVC production plant reactors cooling system are included. The heat generated in the reactor must be removed to maintain its temperature at an optimal range between 50 and 70 °C. To assess the cooling system exergetic and Thermoeconomic indicators were used and it was observed that: (i) The greatest exergetic efficiencies arise in compressors. (ii) The greatest destruction of exergy and reasons of destruction of exergy cost and lower exergoeconomic factors are presented in the evaporative condenser. (iii) The heat exchange equipment has highest relative cost differences. © 2018 ASME.ASMERecurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85040943283&doi=10.1115%2fIMECE2017-70171&partnerID=40&md5=8e56f2cea88af2b0df42cacb88996e67Scopus2-s2.0-85040943283ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017Thermoeconomic analysis of pvc production plant reactors cooling systeminfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCooling systemsEngineering researchEvaporative cooling systemsExergySteam condensersThermoelectric equipmentEvaporative condenserExergetic efficiencyExergoeconomicHeat exchangeProduction plantRelative costsThermo-economicThermoeconomic analysisCooling3 November 2017 through 9 November 2017Fajardo Cuadro, Juan GabrielSarria B.Padron J.Barreto D.Blasing, M., Weigand, M., Muller, M., Effect of temperature and oxygen content on the release of organic and inorganic species during high temperature thermochemical conversion of pvc-condensate (2014) Fuel Processing Technology, pp. 85-91Yuan, G., Chen, D., Yin, L., Wang, Z., Zhao, L., Wang, J., High efficiency chlorine removal from polyvinil chloride (pvc) pyrolysis ith a gas-liquid fluidized bed reactor (2013) Waste Management, pp. 1045-1050(2013) ASHRAE ASHRAE Handbook-Fundamentals, , Atlanta: ASHRAEFábrega, F., Rossi, J., Angelo, J.D., Exergetic analysis of the refrigeration system in ethylene and propylene (2010) Energy, 35 (3), pp. 1224-1231Messineo, A., R744-r717 cascade refrigeration system: Performance evaluation compared with a hfc two-stage system (2012) Energy Procedia, 14, pp. 56-65Yang, M.-H., Yeh, R.-H., Performance and exergy destruction analysis of optimal subcooling for vaporcompression refrigeration systems (2015) International Journal of Heat and Mass, 87, pp. 1-10Mateus, M., Ponce, F., Ricardo, J., Thermoeconomic assessment of an absorption refrigeration and hydrogenfueled diesel power generator cogeneration system (2014) International Journal of Hydrogen Energy, 39 (9), pp. 4590-4599Farshu, L.G., Mhmoudi, S., Rosen, M., Yaru, M., Amidpour, M., Exergoeconomic analysis of double effect absorption refrigeration systems (2012) Energy Conversion and Management, 65, pp. 13-25Kotas, T., (1985) The Exergy Method of Thermal Power Plants Analysis, , Londres: Anchon BrendonYumrutas, R., Kunduz, M., Kano, M., Exergy analysis of vapor compression refrigeration systems (2002) Exergy an international journal, 2, pp. 266-272D'Acaddia, M., Vanoli, L., Thermoeconomic optimization of the condenser in a vapour compression heat pump (2004) International Journal of Refrigeration, 25, pp. 433-441Bejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Design & Optimization, , Toronto: JOHN WILEY & SONS, INCAntonio Rodríguez, R.P., Increasing pvc suspension polymerization productivity-an industrial application (2009) Chemical Engineering and Processing: Process Intensification, 48, pp. 485-492Cengel, Y., Boles, M., (2011) Termodinámica, , Mexico D.F: Mc Graw HillAbusoglu, A., Kanoglu, M., Exergetic and thermoeconomic analyses of diesel engiene powered cogeneration (2008) Applied Thermal Engineering, 29, pp. 234-241Ifaei, P., Ataei, A., Yoo, C., Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers-part 2: Thermoeconomic and environmental analysis (1997) Energy Conversion and Management, 123, pp. 625-642http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD51MiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/2/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5220.500.12585/8957oai:repositorio.utb.edu.co:20.500.12585/89572023-05-26 09:18:32.693Repositorio Institucional UTBrepositorioutb@utb.edu.co |