Thermoeconomic analysis of pvc production plant reactors cooling system

In this work the results of the research made to PVC production plant reactors cooling system are included. The heat generated in the reactor must be removed to maintain its temperature at an optimal range between 50 and 70 °C. To assess the cooling system exergetic and Thermoeconomic indicators wer...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8957
Acceso en línea:
https://hdl.handle.net/20.500.12585/8957
Palabra clave:
Cooling systems
Engineering research
Evaporative cooling systems
Exergy
Steam condensers
Thermoelectric equipment
Evaporative condenser
Exergetic efficiency
Exergoeconomic
Heat exchange
Production plant
Relative costs
Thermo-economic
Thermoeconomic analysis
Cooling
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_05508e07602356348f05281615a24525
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8957
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Thermoeconomic analysis of pvc production plant reactors cooling system
title Thermoeconomic analysis of pvc production plant reactors cooling system
spellingShingle Thermoeconomic analysis of pvc production plant reactors cooling system
Cooling systems
Engineering research
Evaporative cooling systems
Exergy
Steam condensers
Thermoelectric equipment
Evaporative condenser
Exergetic efficiency
Exergoeconomic
Heat exchange
Production plant
Relative costs
Thermo-economic
Thermoeconomic analysis
Cooling
title_short Thermoeconomic analysis of pvc production plant reactors cooling system
title_full Thermoeconomic analysis of pvc production plant reactors cooling system
title_fullStr Thermoeconomic analysis of pvc production plant reactors cooling system
title_full_unstemmed Thermoeconomic analysis of pvc production plant reactors cooling system
title_sort Thermoeconomic analysis of pvc production plant reactors cooling system
dc.subject.keywords.none.fl_str_mv Cooling systems
Engineering research
Evaporative cooling systems
Exergy
Steam condensers
Thermoelectric equipment
Evaporative condenser
Exergetic efficiency
Exergoeconomic
Heat exchange
Production plant
Relative costs
Thermo-economic
Thermoeconomic analysis
Cooling
topic Cooling systems
Engineering research
Evaporative cooling systems
Exergy
Steam condensers
Thermoelectric equipment
Evaporative condenser
Exergetic efficiency
Exergoeconomic
Heat exchange
Production plant
Relative costs
Thermo-economic
Thermoeconomic analysis
Cooling
description In this work the results of the research made to PVC production plant reactors cooling system are included. The heat generated in the reactor must be removed to maintain its temperature at an optimal range between 50 and 70 °C. To assess the cooling system exergetic and Thermoeconomic indicators were used and it was observed that: (i) The greatest exergetic efficiencies arise in compressors. (ii) The greatest destruction of exergy and reasons of destruction of exergy cost and lower exergoeconomic factors are presented in the evaporative condenser. (iii) The heat exchange equipment has highest relative cost differences. © 2018 ASME.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:39Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:39Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6
dc.identifier.isbn.none.fl_str_mv 9780791858417
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8957
dc.identifier.doi.none.fl_str_mv 10.1115/IMECE2017-70171
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56581610900
56581727500
57200341087
57190756815
identifier_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6
9780791858417
10.1115/IMECE2017-70171
Universidad Tecnológica de Bolívar
Repositorio UTB
56581610900
56581727500
57200341087
57190756815
url https://hdl.handle.net/20.500.12585/8957
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 3 November 2017 through 9 November 2017
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040943283&doi=10.1115%2fIMECE2017-70171&partnerID=40&md5=8e56f2cea88af2b0df42cacb88996e67
Scopus2-s2.0-85040943283
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/1/MiniProdInv.png
https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/2/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021591623794688
spelling 2020-03-26T16:32:39Z2020-03-26T16:32:39Z2017ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 69780791858417https://hdl.handle.net/20.500.12585/895710.1115/IMECE2017-70171Universidad Tecnológica de BolívarRepositorio UTB56581610900565817275005720034108757190756815In this work the results of the research made to PVC production plant reactors cooling system are included. The heat generated in the reactor must be removed to maintain its temperature at an optimal range between 50 and 70 °C. To assess the cooling system exergetic and Thermoeconomic indicators were used and it was observed that: (i) The greatest exergetic efficiencies arise in compressors. (ii) The greatest destruction of exergy and reasons of destruction of exergy cost and lower exergoeconomic factors are presented in the evaporative condenser. (iii) The heat exchange equipment has highest relative cost differences. © 2018 ASME.ASMERecurso electrónicoapplication/pdfengAmerican Society of Mechanical Engineers (ASME)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85040943283&doi=10.1115%2fIMECE2017-70171&partnerID=40&md5=8e56f2cea88af2b0df42cacb88996e67Scopus2-s2.0-85040943283ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017Thermoeconomic analysis of pvc production plant reactors cooling systeminfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCooling systemsEngineering researchEvaporative cooling systemsExergySteam condensersThermoelectric equipmentEvaporative condenserExergetic efficiencyExergoeconomicHeat exchangeProduction plantRelative costsThermo-economicThermoeconomic analysisCooling3 November 2017 through 9 November 2017Fajardo Cuadro, Juan GabrielSarria B.Padron J.Barreto D.Blasing, M., Weigand, M., Muller, M., Effect of temperature and oxygen content on the release of organic and inorganic species during high temperature thermochemical conversion of pvc-condensate (2014) Fuel Processing Technology, pp. 85-91Yuan, G., Chen, D., Yin, L., Wang, Z., Zhao, L., Wang, J., High efficiency chlorine removal from polyvinil chloride (pvc) pyrolysis ith a gas-liquid fluidized bed reactor (2013) Waste Management, pp. 1045-1050(2013) ASHRAE ASHRAE Handbook-Fundamentals, , Atlanta: ASHRAEFábrega, F., Rossi, J., Angelo, J.D., Exergetic analysis of the refrigeration system in ethylene and propylene (2010) Energy, 35 (3), pp. 1224-1231Messineo, A., R744-r717 cascade refrigeration system: Performance evaluation compared with a hfc two-stage system (2012) Energy Procedia, 14, pp. 56-65Yang, M.-H., Yeh, R.-H., Performance and exergy destruction analysis of optimal subcooling for vaporcompression refrigeration systems (2015) International Journal of Heat and Mass, 87, pp. 1-10Mateus, M., Ponce, F., Ricardo, J., Thermoeconomic assessment of an absorption refrigeration and hydrogenfueled diesel power generator cogeneration system (2014) International Journal of Hydrogen Energy, 39 (9), pp. 4590-4599Farshu, L.G., Mhmoudi, S., Rosen, M., Yaru, M., Amidpour, M., Exergoeconomic analysis of double effect absorption refrigeration systems (2012) Energy Conversion and Management, 65, pp. 13-25Kotas, T., (1985) The Exergy Method of Thermal Power Plants Analysis, , Londres: Anchon BrendonYumrutas, R., Kunduz, M., Kano, M., Exergy analysis of vapor compression refrigeration systems (2002) Exergy an international journal, 2, pp. 266-272D'Acaddia, M., Vanoli, L., Thermoeconomic optimization of the condenser in a vapour compression heat pump (2004) International Journal of Refrigeration, 25, pp. 433-441Bejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Design & Optimization, , Toronto: JOHN WILEY & SONS, INCAntonio Rodríguez, R.P., Increasing pvc suspension polymerization productivity-an industrial application (2009) Chemical Engineering and Processing: Process Intensification, 48, pp. 485-492Cengel, Y., Boles, M., (2011) Termodinámica, , Mexico D.F: Mc Graw HillAbusoglu, A., Kanoglu, M., Exergetic and thermoeconomic analyses of diesel engiene powered cogeneration (2008) Applied Thermal Engineering, 29, pp. 234-241Ifaei, P., Ataei, A., Yoo, C., Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers-part 2: Thermoeconomic and environmental analysis (1997) Energy Conversion and Management, 123, pp. 625-642http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD51MiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8957/2/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5220.500.12585/8957oai:repositorio.utb.edu.co:20.500.12585/89572023-05-26 09:18:32.693Repositorio Institucional UTBrepositorioutb@utb.edu.co